Step |
Hyp |
Ref |
Expression |
1 |
|
cfsetsnfsetfv.f |
|
2 |
|
cfsetsnfsetfv.g |
|
3 |
|
cfsetsnfsetfv.h |
|
4 |
|
simpl |
|
5 |
4
|
adantr |
|
6 |
5
|
mptexd |
|
7 |
|
vex |
|
8 |
|
feq1 |
|
9 |
7 8 2
|
elab2 |
|
10 |
9
|
biimpi |
|
11 |
10
|
adantl |
|
12 |
|
snidg |
|
13 |
12
|
adantl |
|
14 |
13
|
adantr |
|
15 |
11 14
|
ffvelrnd |
|
16 |
15
|
adantr |
|
17 |
16
|
fmpttd |
|
18 |
|
eqeq2 |
|
19 |
18
|
ralbidv |
|
20 |
19
|
adantl |
|
21 |
|
eqidd |
|
22 |
21
|
ralrimiva |
|
23 |
15 20 22
|
rspcedvd |
|
24 |
17 23
|
jca |
|
25 |
|
feq1 |
|
26 |
|
simpl |
|
27 |
|
eqidd |
|
28 |
|
simpr |
|
29 |
|
fvexd |
|
30 |
|
nfcv |
|
31 |
|
nfmpt1 |
|
32 |
30 31
|
nfeq |
|
33 |
|
nfv |
|
34 |
32 33
|
nfan |
|
35 |
|
nfcv |
|
36 |
|
nfcv |
|
37 |
26 27 28 29 34 35 36
|
fvmptdf |
|
38 |
37
|
eqeq1d |
|
39 |
38
|
ralbidva |
|
40 |
39
|
rexbidv |
|
41 |
25 40
|
anbi12d |
|
42 |
6 24 41
|
elabd |
|
43 |
42 1
|
eleqtrrdi |
|
44 |
43 3
|
fmptd |
|