Metamath Proof Explorer


Theorem cfsetsnfsetf

Description: The mapping of the class of singleton functions into the class of constant functions is a function. (Contributed by AV, 14-Sep-2024)

Ref Expression
Hypotheses cfsetsnfsetfv.f F=f|f:ABbBzAfz=b
cfsetsnfsetfv.g G=x|x:YB
cfsetsnfsetfv.h H=gGaAgY
Assertion cfsetsnfsetf AVYAH:GF

Proof

Step Hyp Ref Expression
1 cfsetsnfsetfv.f F=f|f:ABbBzAfz=b
2 cfsetsnfsetfv.g G=x|x:YB
3 cfsetsnfsetfv.h H=gGaAgY
4 simpl AVYAAV
5 4 adantr AVYAgGAV
6 5 mptexd AVYAgGaAgYV
7 vex gV
8 feq1 x=gx:YBg:YB
9 7 8 2 elab2 gGg:YB
10 9 biimpi gGg:YB
11 10 adantl AVYAgGg:YB
12 snidg YAYY
13 12 adantl AVYAYY
14 13 adantr AVYAgGYY
15 11 14 ffvelcdmd AVYAgGgYB
16 15 adantr AVYAgGaAgYB
17 16 fmpttd AVYAgGaAgY:AB
18 eqeq2 b=gYgY=bgY=gY
19 18 ralbidv b=gYzAgY=bzAgY=gY
20 19 adantl AVYAgGb=gYzAgY=bzAgY=gY
21 eqidd AVYAgGzAgY=gY
22 21 ralrimiva AVYAgGzAgY=gY
23 15 20 22 rspcedvd AVYAgGbBzAgY=b
24 17 23 jca AVYAgGaAgY:ABbBzAgY=b
25 feq1 f=aAgYf:ABaAgY:AB
26 simpl f=aAgYzAf=aAgY
27 eqidd f=aAgYzAa=zgY=gY
28 simpr f=aAgYzAzA
29 fvexd f=aAgYzAgYV
30 nfcv _af
31 nfmpt1 _aaAgY
32 30 31 nfeq af=aAgY
33 nfv azA
34 32 33 nfan af=aAgYzA
35 nfcv _az
36 nfcv _agY
37 26 27 28 29 34 35 36 fvmptdf f=aAgYzAfz=gY
38 37 eqeq1d f=aAgYzAfz=bgY=b
39 38 ralbidva f=aAgYzAfz=bzAgY=b
40 39 rexbidv f=aAgYbBzAfz=bbBzAgY=b
41 25 40 anbi12d f=aAgYf:ABbBzAfz=baAgY:ABbBzAgY=b
42 6 24 41 elabd AVYAgGaAgYf|f:ABbBzAfz=b
43 42 1 eleqtrrdi AVYAgGaAgYF
44 43 3 fmptd AVYAH:GF