Description: Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 3-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cidfval.b | |
|
cidfval.h | |
||
cidfval.o | |
||
cidfval.c | |
||
cidfval.i | |
||
Assertion | cidfval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cidfval.b | |
|
2 | cidfval.h | |
|
3 | cidfval.o | |
|
4 | cidfval.c | |
|
5 | cidfval.i | |
|
6 | fvexd | |
|
7 | fveq2 | |
|
8 | 7 1 | eqtr4di | |
9 | fvexd | |
|
10 | simpl | |
|
11 | 10 | fveq2d | |
12 | 11 2 | eqtr4di | |
13 | fvexd | |
|
14 | simpll | |
|
15 | 14 | fveq2d | |
16 | 15 3 | eqtr4di | |
17 | simpllr | |
|
18 | simplr | |
|
19 | 18 | oveqd | |
20 | 18 | oveqd | |
21 | simpr | |
|
22 | 21 | oveqd | |
23 | 22 | oveqd | |
24 | 23 | eqeq1d | |
25 | 20 24 | raleqbidv | |
26 | 18 | oveqd | |
27 | 21 | oveqd | |
28 | 27 | oveqd | |
29 | 28 | eqeq1d | |
30 | 26 29 | raleqbidv | |
31 | 25 30 | anbi12d | |
32 | 17 31 | raleqbidv | |
33 | 19 32 | riotaeqbidv | |
34 | 17 33 | mpteq12dv | |
35 | 13 16 34 | csbied2 | |
36 | 9 12 35 | csbied2 | |
37 | 6 8 36 | csbied2 | |
38 | df-cid | |
|
39 | 37 38 1 | mptfvmpt | |
40 | 4 39 | syl | |
41 | 5 40 | eqtrid | |