Metamath Proof Explorer


Theorem cidfval

Description: Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses cidfval.b B = Base C
cidfval.h H = Hom C
cidfval.o · ˙ = comp C
cidfval.c φ C Cat
cidfval.i 1 ˙ = Id C
Assertion cidfval φ 1 ˙ = x B ι g x H x | y B f y H x g y x · ˙ x f = f f x H y f x x · ˙ y g = f

Proof

Step Hyp Ref Expression
1 cidfval.b B = Base C
2 cidfval.h H = Hom C
3 cidfval.o · ˙ = comp C
4 cidfval.c φ C Cat
5 cidfval.i 1 ˙ = Id C
6 fvexd c = C Base c V
7 fveq2 c = C Base c = Base C
8 7 1 syl6eqr c = C Base c = B
9 fvexd c = C b = B Hom c V
10 simpl c = C b = B c = C
11 10 fveq2d c = C b = B Hom c = Hom C
12 11 2 syl6eqr c = C b = B Hom c = H
13 fvexd c = C b = B h = H comp c V
14 simpll c = C b = B h = H c = C
15 14 fveq2d c = C b = B h = H comp c = comp C
16 15 3 syl6eqr c = C b = B h = H comp c = · ˙
17 simpllr c = C b = B h = H o = · ˙ b = B
18 simplr c = C b = B h = H o = · ˙ h = H
19 18 oveqd c = C b = B h = H o = · ˙ x h x = x H x
20 18 oveqd c = C b = B h = H o = · ˙ y h x = y H x
21 simpr c = C b = B h = H o = · ˙ o = · ˙
22 21 oveqd c = C b = B h = H o = · ˙ y x o x = y x · ˙ x
23 22 oveqd c = C b = B h = H o = · ˙ g y x o x f = g y x · ˙ x f
24 23 eqeq1d c = C b = B h = H o = · ˙ g y x o x f = f g y x · ˙ x f = f
25 20 24 raleqbidv c = C b = B h = H o = · ˙ f y h x g y x o x f = f f y H x g y x · ˙ x f = f
26 18 oveqd c = C b = B h = H o = · ˙ x h y = x H y
27 21 oveqd c = C b = B h = H o = · ˙ x x o y = x x · ˙ y
28 27 oveqd c = C b = B h = H o = · ˙ f x x o y g = f x x · ˙ y g
29 28 eqeq1d c = C b = B h = H o = · ˙ f x x o y g = f f x x · ˙ y g = f
30 26 29 raleqbidv c = C b = B h = H o = · ˙ f x h y f x x o y g = f f x H y f x x · ˙ y g = f
31 25 30 anbi12d c = C b = B h = H o = · ˙ f y h x g y x o x f = f f x h y f x x o y g = f f y H x g y x · ˙ x f = f f x H y f x x · ˙ y g = f
32 17 31 raleqbidv c = C b = B h = H o = · ˙ y b f y h x g y x o x f = f f x h y f x x o y g = f y B f y H x g y x · ˙ x f = f f x H y f x x · ˙ y g = f
33 19 32 riotaeqbidv c = C b = B h = H o = · ˙ ι g x h x | y b f y h x g y x o x f = f f x h y f x x o y g = f = ι g x H x | y B f y H x g y x · ˙ x f = f f x H y f x x · ˙ y g = f
34 17 33 mpteq12dv c = C b = B h = H o = · ˙ x b ι g x h x | y b f y h x g y x o x f = f f x h y f x x o y g = f = x B ι g x H x | y B f y H x g y x · ˙ x f = f f x H y f x x · ˙ y g = f
35 13 16 34 csbied2 c = C b = B h = H comp c / o x b ι g x h x | y b f y h x g y x o x f = f f x h y f x x o y g = f = x B ι g x H x | y B f y H x g y x · ˙ x f = f f x H y f x x · ˙ y g = f
36 9 12 35 csbied2 c = C b = B Hom c / h comp c / o x b ι g x h x | y b f y h x g y x o x f = f f x h y f x x o y g = f = x B ι g x H x | y B f y H x g y x · ˙ x f = f f x H y f x x · ˙ y g = f
37 6 8 36 csbied2 c = C Base c / b Hom c / h comp c / o x b ι g x h x | y b f y h x g y x o x f = f f x h y f x x o y g = f = x B ι g x H x | y B f y H x g y x · ˙ x f = f f x H y f x x · ˙ y g = f
38 df-cid Id = c Cat Base c / b Hom c / h comp c / o x b ι g x h x | y b f y h x g y x o x f = f f x h y f x x o y g = f
39 37 38 1 mptfvmpt C Cat Id C = x B ι g x H x | y B f y H x g y x · ˙ x f = f f x H y f x x · ˙ y g = f
40 4 39 syl φ Id C = x B ι g x H x | y B f y H x g y x · ˙ x f = f f x H y f x x · ˙ y g = f
41 5 40 syl5eq φ 1 ˙ = x B ι g x H x | y B f y H x g y x · ˙ x f = f f x H y f x x · ˙ y g = f