Metamath Proof Explorer


Theorem cidfval

Description: Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses cidfval.b B=BaseC
cidfval.h H=HomC
cidfval.o ·˙=compC
cidfval.c φCCat
cidfval.i 1˙=IdC
Assertion cidfval φ1˙=xBιgxHx|yBfyHxgyx·˙xf=ffxHyfxx·˙yg=f

Proof

Step Hyp Ref Expression
1 cidfval.b B=BaseC
2 cidfval.h H=HomC
3 cidfval.o ·˙=compC
4 cidfval.c φCCat
5 cidfval.i 1˙=IdC
6 fvexd c=CBasecV
7 fveq2 c=CBasec=BaseC
8 7 1 eqtr4di c=CBasec=B
9 fvexd c=Cb=BHomcV
10 simpl c=Cb=Bc=C
11 10 fveq2d c=Cb=BHomc=HomC
12 11 2 eqtr4di c=Cb=BHomc=H
13 fvexd c=Cb=Bh=HcompcV
14 simpll c=Cb=Bh=Hc=C
15 14 fveq2d c=Cb=Bh=Hcompc=compC
16 15 3 eqtr4di c=Cb=Bh=Hcompc=·˙
17 simpllr c=Cb=Bh=Ho=·˙b=B
18 simplr c=Cb=Bh=Ho=·˙h=H
19 18 oveqd c=Cb=Bh=Ho=·˙xhx=xHx
20 18 oveqd c=Cb=Bh=Ho=·˙yhx=yHx
21 simpr c=Cb=Bh=Ho=·˙o=·˙
22 21 oveqd c=Cb=Bh=Ho=·˙yxox=yx·˙x
23 22 oveqd c=Cb=Bh=Ho=·˙gyxoxf=gyx·˙xf
24 23 eqeq1d c=Cb=Bh=Ho=·˙gyxoxf=fgyx·˙xf=f
25 20 24 raleqbidv c=Cb=Bh=Ho=·˙fyhxgyxoxf=ffyHxgyx·˙xf=f
26 18 oveqd c=Cb=Bh=Ho=·˙xhy=xHy
27 21 oveqd c=Cb=Bh=Ho=·˙xxoy=xx·˙y
28 27 oveqd c=Cb=Bh=Ho=·˙fxxoyg=fxx·˙yg
29 28 eqeq1d c=Cb=Bh=Ho=·˙fxxoyg=ffxx·˙yg=f
30 26 29 raleqbidv c=Cb=Bh=Ho=·˙fxhyfxxoyg=ffxHyfxx·˙yg=f
31 25 30 anbi12d c=Cb=Bh=Ho=·˙fyhxgyxoxf=ffxhyfxxoyg=ffyHxgyx·˙xf=ffxHyfxx·˙yg=f
32 17 31 raleqbidv c=Cb=Bh=Ho=·˙ybfyhxgyxoxf=ffxhyfxxoyg=fyBfyHxgyx·˙xf=ffxHyfxx·˙yg=f
33 19 32 riotaeqbidv c=Cb=Bh=Ho=·˙ιgxhx|ybfyhxgyxoxf=ffxhyfxxoyg=f=ιgxHx|yBfyHxgyx·˙xf=ffxHyfxx·˙yg=f
34 17 33 mpteq12dv c=Cb=Bh=Ho=·˙xbιgxhx|ybfyhxgyxoxf=ffxhyfxxoyg=f=xBιgxHx|yBfyHxgyx·˙xf=ffxHyfxx·˙yg=f
35 13 16 34 csbied2 c=Cb=Bh=Hcompc/oxbιgxhx|ybfyhxgyxoxf=ffxhyfxxoyg=f=xBιgxHx|yBfyHxgyx·˙xf=ffxHyfxx·˙yg=f
36 9 12 35 csbied2 c=Cb=BHomc/hcompc/oxbιgxhx|ybfyhxgyxoxf=ffxhyfxxoyg=f=xBιgxHx|yBfyHxgyx·˙xf=ffxHyfxx·˙yg=f
37 6 8 36 csbied2 c=CBasec/bHomc/hcompc/oxbιgxhx|ybfyhxgyxoxf=ffxhyfxxoyg=f=xBιgxHx|yBfyHxgyx·˙xf=ffxHyfxx·˙yg=f
38 df-cid Id=cCatBasec/bHomc/hcompc/oxbιgxhx|ybfyhxgyxoxf=ffxhyfxxoyg=f
39 37 38 1 mptfvmpt CCatIdC=xBιgxHx|yBfyHxgyx·˙xf=ffxHyfxx·˙yg=f
40 4 39 syl φIdC=xBιgxHx|yBfyHxgyx·˙xf=ffxHyfxx·˙yg=f
41 5 40 eqtrid φ1˙=xBιgxHx|yBfyHxgyx·˙xf=ffxHyfxx·˙yg=f