Metamath Proof Explorer


Theorem cjexp

Description: Complex conjugate of positive integer exponentiation. (Contributed by NM, 7-Jun-2006)

Ref Expression
Assertion cjexp AN0AN=AN

Proof

Step Hyp Ref Expression
1 oveq2 j=0Aj=A0
2 1 fveq2d j=0Aj=A0
3 oveq2 j=0Aj=A0
4 2 3 eqeq12d j=0Aj=AjA0=A0
5 oveq2 j=kAj=Ak
6 5 fveq2d j=kAj=Ak
7 oveq2 j=kAj=Ak
8 6 7 eqeq12d j=kAj=AjAk=Ak
9 oveq2 j=k+1Aj=Ak+1
10 9 fveq2d j=k+1Aj=Ak+1
11 oveq2 j=k+1Aj=Ak+1
12 10 11 eqeq12d j=k+1Aj=AjAk+1=Ak+1
13 oveq2 j=NAj=AN
14 13 fveq2d j=NAj=AN
15 oveq2 j=NAj=AN
16 14 15 eqeq12d j=NAj=AjAN=AN
17 exp0 AA0=1
18 17 fveq2d AA0=1
19 cjcl AA
20 exp0 AA0=1
21 1re 1
22 cjre 11=1
23 21 22 ax-mp 1=1
24 20 23 eqtr4di AA0=1
25 19 24 syl AA0=1
26 18 25 eqtr4d AA0=A0
27 expp1 Ak0Ak+1=AkA
28 27 fveq2d Ak0Ak+1=AkA
29 expcl Ak0Ak
30 simpl Ak0A
31 cjmul AkAAkA=AkA
32 29 30 31 syl2anc Ak0AkA=AkA
33 28 32 eqtrd Ak0Ak+1=AkA
34 33 adantr Ak0Ak=AkAk+1=AkA
35 oveq1 Ak=AkAkA=AkA
36 expp1 Ak0Ak+1=AkA
37 19 36 sylan Ak0Ak+1=AkA
38 37 eqcomd Ak0AkA=Ak+1
39 35 38 sylan9eqr Ak0Ak=AkAkA=Ak+1
40 34 39 eqtrd Ak0Ak=AkAk+1=Ak+1
41 4 8 12 16 26 40 nn0indd AN0AN=AN