Description: Complex conjugate of positive integer exponentiation. (Contributed by NM, 7-Jun-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | cjexp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 | |
|
2 | 1 | fveq2d | |
3 | oveq2 | |
|
4 | 2 3 | eqeq12d | |
5 | oveq2 | |
|
6 | 5 | fveq2d | |
7 | oveq2 | |
|
8 | 6 7 | eqeq12d | |
9 | oveq2 | |
|
10 | 9 | fveq2d | |
11 | oveq2 | |
|
12 | 10 11 | eqeq12d | |
13 | oveq2 | |
|
14 | 13 | fveq2d | |
15 | oveq2 | |
|
16 | 14 15 | eqeq12d | |
17 | exp0 | |
|
18 | 17 | fveq2d | |
19 | cjcl | |
|
20 | exp0 | |
|
21 | 1re | |
|
22 | cjre | |
|
23 | 21 22 | ax-mp | |
24 | 20 23 | eqtr4di | |
25 | 19 24 | syl | |
26 | 18 25 | eqtr4d | |
27 | expp1 | |
|
28 | 27 | fveq2d | |
29 | expcl | |
|
30 | simpl | |
|
31 | cjmul | |
|
32 | 29 30 31 | syl2anc | |
33 | 28 32 | eqtrd | |
34 | 33 | adantr | |
35 | oveq1 | |
|
36 | expp1 | |
|
37 | 19 36 | sylan | |
38 | 37 | eqcomd | |
39 | 35 38 | sylan9eqr | |
40 | 34 39 | eqtrd | |
41 | 4 8 12 16 26 40 | nn0indd | |