Metamath Proof Explorer


Theorem climreeq

Description: If F is a real function, then F converges to A with respect to the standard topology on the reals if and only if it converges to A with respect to the standard topology on complex numbers. In the theorem, R is defined to be convergence w.r.t. the standard topology on the reals and then F R A represents the statement " F converges to A , with respect to the standard topology on the reals". Notice that there is no need for the hypothesis that A is a real number. (Contributed by Glauco Siliprandi, 2-Jul-2017)

Ref Expression
Hypotheses climreeq.1 R=ttopGenran.
climreeq.2 Z=M
climreeq.3 φM
climreeq.4 φF:Z
Assertion climreeq φFRAFA

Proof

Step Hyp Ref Expression
1 climreeq.1 R=ttopGenran.
2 climreeq.2 Z=M
3 climreeq.3 φM
4 climreeq.4 φF:Z
5 1 breqi FRAFttopGenran.A
6 ax-resscn
7 6 a1i φ
8 4 7 fssd φF:Z
9 eqid TopOpenfld=TopOpenfld
10 9 2 lmclimf MF:ZFtTopOpenfldAFA
11 3 8 10 syl2anc φFtTopOpenfldAFA
12 9 tgioo2 topGenran.=TopOpenfld𝑡
13 reex V
14 13 a1i φAV
15 9 cnfldtop TopOpenfldTop
16 15 a1i φATopOpenfldTop
17 simpr φAA
18 3 adantr φAM
19 4 adantr φAF:Z
20 12 2 14 16 17 18 19 lmss φAFtTopOpenfldAFttopGenran.A
21 20 pm5.32da φAFtTopOpenfldAAFttopGenran.A
22 simpr AFtTopOpenfldAFtTopOpenfldA
23 3 adantr φFtTopOpenfldAM
24 11 biimpa φFtTopOpenfldAFA
25 4 ffvelcdmda φnZFn
26 25 adantlr φFtTopOpenfldAnZFn
27 2 23 24 26 climrecl φFtTopOpenfldAA
28 27 ex φFtTopOpenfldAA
29 28 ancrd φFtTopOpenfldAAFtTopOpenfldA
30 22 29 impbid2 φAFtTopOpenfldAFtTopOpenfldA
31 simpr AFttopGenran.AFttopGenran.A
32 retopon topGenran.TopOn
33 32 a1i φFttopGenran.AtopGenran.TopOn
34 simpr φFttopGenran.AFttopGenran.A
35 lmcl topGenran.TopOnFttopGenran.AA
36 33 34 35 syl2anc φFttopGenran.AA
37 36 ex φFttopGenran.AA
38 37 ancrd φFttopGenran.AAFttopGenran.A
39 31 38 impbid2 φAFttopGenran.AFttopGenran.A
40 21 30 39 3bitr3d φFtTopOpenfldAFttopGenran.A
41 11 40 bitr3d φFAFttopGenran.A
42 5 41 bitr4id φFRAFA