Metamath Proof Explorer


Theorem clsval

Description: The closure of a subset of a topology's base set is the intersection of all the closed sets that include it. Definition of closure of Munkres p. 94. (Contributed by NM, 10-Sep-2006) (Revised by Mario Carneiro, 11-Nov-2013)

Ref Expression
Hypothesis iscld.1 X = J
Assertion clsval J Top S X cls J S = x Clsd J | S x

Proof

Step Hyp Ref Expression
1 iscld.1 X = J
2 1 clsfval J Top cls J = y 𝒫 X x Clsd J | y x
3 2 fveq1d J Top cls J S = y 𝒫 X x Clsd J | y x S
4 3 adantr J Top S X cls J S = y 𝒫 X x Clsd J | y x S
5 eqid y 𝒫 X x Clsd J | y x = y 𝒫 X x Clsd J | y x
6 sseq1 y = S y x S x
7 6 rabbidv y = S x Clsd J | y x = x Clsd J | S x
8 7 inteqd y = S x Clsd J | y x = x Clsd J | S x
9 1 topopn J Top X J
10 elpw2g X J S 𝒫 X S X
11 9 10 syl J Top S 𝒫 X S X
12 11 biimpar J Top S X S 𝒫 X
13 1 topcld J Top X Clsd J
14 sseq2 x = X S x S X
15 14 rspcev X Clsd J S X x Clsd J S x
16 13 15 sylan J Top S X x Clsd J S x
17 intexrab x Clsd J S x x Clsd J | S x V
18 16 17 sylib J Top S X x Clsd J | S x V
19 5 8 12 18 fvmptd3 J Top S X y 𝒫 X x Clsd J | y x S = x Clsd J | S x
20 4 19 eqtrd J Top S X cls J S = x Clsd J | S x