Metamath Proof Explorer


Theorem clwlkclwwlkfolem

Description: Lemma for clwlkclwwlkfo . (Contributed by AV, 25-May-2022)

Ref Expression
Hypothesis clwlkclwwlkf.c C = w ClWalks G | 1 1 st w
Assertion clwlkclwwlkfolem W Word Vtx G 1 W f W ++ ⟨“ W 0 ”⟩ ClWalks G f W ++ ⟨“ W 0 ”⟩ C

Proof

Step Hyp Ref Expression
1 clwlkclwwlkf.c C = w ClWalks G | 1 1 st w
2 simp3 W Word Vtx G 1 W f W ++ ⟨“ W 0 ”⟩ ClWalks G f W ++ ⟨“ W 0 ”⟩ ClWalks G
3 wrdlenccats1lenm1 W Word Vtx G W ++ ⟨“ W 0 ”⟩ 1 = W
4 3 eqcomd W Word Vtx G W = W ++ ⟨“ W 0 ”⟩ 1
5 4 breq2d W Word Vtx G 1 W 1 W ++ ⟨“ W 0 ”⟩ 1
6 5 biimpa W Word Vtx G 1 W 1 W ++ ⟨“ W 0 ”⟩ 1
7 6 3adant3 W Word Vtx G 1 W f W ++ ⟨“ W 0 ”⟩ ClWalks G 1 W ++ ⟨“ W 0 ”⟩ 1
8 df-br f ClWalks G W ++ ⟨“ W 0 ”⟩ f W ++ ⟨“ W 0 ”⟩ ClWalks G
9 clwlkiswlk f ClWalks G W ++ ⟨“ W 0 ”⟩ f Walks G W ++ ⟨“ W 0 ”⟩
10 wlklenvm1 f Walks G W ++ ⟨“ W 0 ”⟩ f = W ++ ⟨“ W 0 ”⟩ 1
11 9 10 syl f ClWalks G W ++ ⟨“ W 0 ”⟩ f = W ++ ⟨“ W 0 ”⟩ 1
12 8 11 sylbir f W ++ ⟨“ W 0 ”⟩ ClWalks G f = W ++ ⟨“ W 0 ”⟩ 1
13 12 3ad2ant3 W Word Vtx G 1 W f W ++ ⟨“ W 0 ”⟩ ClWalks G f = W ++ ⟨“ W 0 ”⟩ 1
14 7 13 breqtrrd W Word Vtx G 1 W f W ++ ⟨“ W 0 ”⟩ ClWalks G 1 f
15 vex f V
16 ovex W ++ ⟨“ W 0 ”⟩ V
17 15 16 op1std c = f W ++ ⟨“ W 0 ”⟩ 1 st c = f
18 17 fveq2d c = f W ++ ⟨“ W 0 ”⟩ 1 st c = f
19 18 breq2d c = f W ++ ⟨“ W 0 ”⟩ 1 1 st c 1 f
20 2fveq3 w = c 1 st w = 1 st c
21 20 breq2d w = c 1 1 st w 1 1 st c
22 21 cbvrabv w ClWalks G | 1 1 st w = c ClWalks G | 1 1 st c
23 1 22 eqtri C = c ClWalks G | 1 1 st c
24 19 23 elrab2 f W ++ ⟨“ W 0 ”⟩ C f W ++ ⟨“ W 0 ”⟩ ClWalks G 1 f
25 2 14 24 sylanbrc W Word Vtx G 1 W f W ++ ⟨“ W 0 ”⟩ ClWalks G f W ++ ⟨“ W 0 ”⟩ C