Description: Lemma 4 for clwwlkf1o : F is an onto function. (Contributed by Alexander van der Vekens, 29-Sep-2018) (Revised by AV, 26-Apr-2021) (Revised by AV, 1-Nov-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | clwwlkf1o.d | |
|
clwwlkf1o.f | |
||
Assertion | clwwlkfo | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwwlkf1o.d | |
|
2 | clwwlkf1o.f | |
|
3 | 1 2 | clwwlkf | |
4 | eqid | |
|
5 | eqid | |
|
6 | 4 5 | clwwlknp | |
7 | simpr | |
|
8 | simpl1 | |
|
9 | 3simpc | |
|
10 | 9 | adantr | |
11 | 1 | clwwlkel | |
12 | 7 8 10 11 | syl3anc | |
13 | oveq2 | |
|
14 | 13 | eqcoms | |
15 | 14 | adantl | |
16 | 15 | 3ad2ant1 | |
17 | 16 | adantr | |
18 | simpll | |
|
19 | fstwrdne0 | |
|
20 | 19 | ancoms | |
21 | 20 | s1cld | |
22 | 18 21 | jca | |
23 | 22 | 3ad2antl1 | |
24 | pfxccat1 | |
|
25 | 23 24 | syl | |
26 | 17 25 | eqtr2d | |
27 | 12 26 | jca | |
28 | 27 | ex | |
29 | 6 28 | syl | |
30 | 29 | impcom | |
31 | oveq1 | |
|
32 | 31 | rspceeqv | |
33 | 30 32 | syl | |
34 | 1 2 | clwwlkfv | |
35 | 34 | eqeq2d | |
36 | 35 | adantl | |
37 | 36 | rexbidva | |
38 | 33 37 | mpbird | |
39 | 38 | ralrimiva | |
40 | dffo3 | |
|
41 | 3 39 40 | sylanbrc | |