Metamath Proof Explorer


Theorem clwwlknonex2e

Description: Extending a closed walk W on vertex X by an additional edge (forth and back) results in a closed walk on vertex X . (Contributed by AV, 17-Apr-2022)

Ref Expression
Hypotheses clwwlknonex2.v V=VtxG
clwwlknonex2.e E=EdgG
Assertion clwwlknonex2e XVYVN3XYEWXClWWalksNOnGN2W++⟨“X”⟩++⟨“Y”⟩XClWWalksNOnGN

Proof

Step Hyp Ref Expression
1 clwwlknonex2.v V=VtxG
2 clwwlknonex2.e E=EdgG
3 1 2 clwwlknonex2 XVYVN3XYEWXClWWalksNOnGN2W++⟨“X”⟩++⟨“Y”⟩NClWWalksNG
4 isclwwlknon WXClWWalksNOnGN2WN2ClWWalksNGW0=X
5 isclwwlkn WN2ClWWalksNGWClWWalksGW=N2
6 1 clwwlkbp WClWWalksGGVWWordVW
7 6 simp2d WClWWalksGWWordV
8 clwwlkgt0 WClWWalksG0<W
9 7 8 jca WClWWalksGWWordV0<W
10 9 adantr WClWWalksGW=N2WWordV0<W
11 5 10 sylbi WN2ClWWalksNGWWordV0<W
12 11 ad2antrl XVYVN3WN2ClWWalksNGW0=XWWordV0<W
13 ccat2s1fst WWordV0<WW++⟨“X”⟩++⟨“Y”⟩0=W0
14 12 13 syl XVYVN3WN2ClWWalksNGW0=XW++⟨“X”⟩++⟨“Y”⟩0=W0
15 simprr XVYVN3WN2ClWWalksNGW0=XW0=X
16 14 15 eqtrd XVYVN3WN2ClWWalksNGW0=XW++⟨“X”⟩++⟨“Y”⟩0=X
17 16 ex XVYVN3WN2ClWWalksNGW0=XW++⟨“X”⟩++⟨“Y”⟩0=X
18 4 17 biimtrid XVYVN3WXClWWalksNOnGN2W++⟨“X”⟩++⟨“Y”⟩0=X
19 18 a1d XVYVN3XYEWXClWWalksNOnGN2W++⟨“X”⟩++⟨“Y”⟩0=X
20 19 3imp XVYVN3XYEWXClWWalksNOnGN2W++⟨“X”⟩++⟨“Y”⟩0=X
21 isclwwlknon W++⟨“X”⟩++⟨“Y”⟩XClWWalksNOnGNW++⟨“X”⟩++⟨“Y”⟩NClWWalksNGW++⟨“X”⟩++⟨“Y”⟩0=X
22 3 20 21 sylanbrc XVYVN3XYEWXClWWalksNOnGN2W++⟨“X”⟩++⟨“Y”⟩XClWWalksNOnGN