Metamath Proof Explorer


Theorem cmpcmet

Description: A compact metric space is complete. One half of heibor . (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses relcmpcmet.1 J = MetOpen D
relcmpcmet.2 φ D Met X
cmpcmet.3 φ J Comp
Assertion cmpcmet φ D CMet X

Proof

Step Hyp Ref Expression
1 relcmpcmet.1 J = MetOpen D
2 relcmpcmet.2 φ D Met X
3 cmpcmet.3 φ J Comp
4 1rp 1 +
5 4 a1i φ 1 +
6 3 adantr φ x X J Comp
7 metxmet D Met X D ∞Met X
8 2 7 syl φ D ∞Met X
9 8 adantr φ x X D ∞Met X
10 1 mopntop D ∞Met X J Top
11 9 10 syl φ x X J Top
12 simpr φ x X x X
13 rpxr 1 + 1 *
14 4 13 mp1i φ x X 1 *
15 blssm D ∞Met X x X 1 * x ball D 1 X
16 9 12 14 15 syl3anc φ x X x ball D 1 X
17 1 mopnuni D ∞Met X X = J
18 9 17 syl φ x X X = J
19 16 18 sseqtrd φ x X x ball D 1 J
20 eqid J = J
21 20 clscld J Top x ball D 1 J cls J x ball D 1 Clsd J
22 11 19 21 syl2anc φ x X cls J x ball D 1 Clsd J
23 cmpcld J Comp cls J x ball D 1 Clsd J J 𝑡 cls J x ball D 1 Comp
24 6 22 23 syl2anc φ x X J 𝑡 cls J x ball D 1 Comp
25 1 2 5 24 relcmpcmet φ D CMet X