Description: A compact metric space is complete. One half of heibor . (Contributed by Mario Carneiro, 15-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | relcmpcmet.1 | |
|
relcmpcmet.2 | |
||
cmpcmet.3 | |
||
Assertion | cmpcmet | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcmpcmet.1 | |
|
2 | relcmpcmet.2 | |
|
3 | cmpcmet.3 | |
|
4 | 1rp | |
|
5 | 4 | a1i | |
6 | 3 | adantr | |
7 | metxmet | |
|
8 | 2 7 | syl | |
9 | 8 | adantr | |
10 | 1 | mopntop | |
11 | 9 10 | syl | |
12 | simpr | |
|
13 | rpxr | |
|
14 | 4 13 | mp1i | |
15 | blssm | |
|
16 | 9 12 14 15 | syl3anc | |
17 | 1 | mopnuni | |
18 | 9 17 | syl | |
19 | 16 18 | sseqtrd | |
20 | eqid | |
|
21 | 20 | clscld | |
22 | 11 19 21 | syl2anc | |
23 | cmpcld | |
|
24 | 6 22 23 | syl2anc | |
25 | 1 2 5 24 | relcmpcmet | |