Metamath Proof Explorer


Theorem cmpcmet

Description: A compact metric space is complete. One half of heibor . (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses relcmpcmet.1 J=MetOpenD
relcmpcmet.2 φDMetX
cmpcmet.3 φJComp
Assertion cmpcmet φDCMetX

Proof

Step Hyp Ref Expression
1 relcmpcmet.1 J=MetOpenD
2 relcmpcmet.2 φDMetX
3 cmpcmet.3 φJComp
4 1rp 1+
5 4 a1i φ1+
6 3 adantr φxXJComp
7 metxmet DMetXD∞MetX
8 2 7 syl φD∞MetX
9 8 adantr φxXD∞MetX
10 1 mopntop D∞MetXJTop
11 9 10 syl φxXJTop
12 simpr φxXxX
13 rpxr 1+1*
14 4 13 mp1i φxX1*
15 blssm D∞MetXxX1*xballD1X
16 9 12 14 15 syl3anc φxXxballD1X
17 1 mopnuni D∞MetXX=J
18 9 17 syl φxXX=J
19 16 18 sseqtrd φxXxballD1J
20 eqid J=J
21 20 clscld JTopxballD1JclsJxballD1ClsdJ
22 11 19 21 syl2anc φxXclsJxballD1ClsdJ
23 cmpcld JCompclsJxballD1ClsdJJ𝑡clsJxballD1Comp
24 6 22 23 syl2anc φxXJ𝑡clsJxballD1Comp
25 1 2 5 24 relcmpcmet φDCMetX