Description: The restriction of a complete metric space is complete iff it is closed. (Contributed by Mario Carneiro, 15-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cmsss.h | |
|
cmsss.x | |
||
cmsss.j | |
||
Assertion | cmsss | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmsss.h | |
|
2 | cmsss.x | |
|
3 | cmsss.j | |
|
4 | simpr | |
|
5 | xpss12 | |
|
6 | 4 5 | sylancom | |
7 | 6 | resabs1d | |
8 | 2 | fvexi | |
9 | 8 | ssex | |
10 | 9 | adantl | |
11 | eqid | |
|
12 | 1 11 | ressds | |
13 | 10 12 | syl | |
14 | 1 2 | ressbas2 | |
15 | 14 | adantl | |
16 | 15 | sqxpeqd | |
17 | 13 16 | reseq12d | |
18 | 7 17 | eqtrd | |
19 | 15 | fveq2d | |
20 | 18 19 | eleq12d | |
21 | eqid | |
|
22 | 2 21 | cmscmet | |
23 | 22 | adantr | |
24 | eqid | |
|
25 | 24 | cmetss | |
26 | 23 25 | syl | |
27 | 20 26 | bitr3d | |
28 | cmsms | |
|
29 | ressms | |
|
30 | 1 29 | eqeltrid | |
31 | 28 9 30 | syl2an | |
32 | eqid | |
|
33 | eqid | |
|
34 | 32 33 | iscms | |
35 | 34 | baib | |
36 | 31 35 | syl | |
37 | 28 | adantr | |
38 | 3 2 21 | mstopn | |
39 | 37 38 | syl | |
40 | 39 | fveq2d | |
41 | 40 | eleq2d | |
42 | 27 36 41 | 3bitr4d | |