Metamath Proof Explorer


Theorem cnbdibl

Description: A continuous bounded function is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses cnbdibl.a φAdomvol
cnbdibl.va φvolA
cnbdibl.f φF:Acn
cnbdibl.bd φxydomFFyx
Assertion cnbdibl φF𝐿1

Proof

Step Hyp Ref Expression
1 cnbdibl.a φAdomvol
2 cnbdibl.va φvolA
3 cnbdibl.f φF:Acn
4 cnbdibl.bd φxydomFFyx
5 cnmbf AdomvolF:AcnFMblFn
6 1 3 5 syl2anc φFMblFn
7 cncff F:AcnF:A
8 fdm F:AdomF=A
9 3 7 8 3syl φdomF=A
10 9 fveq2d φvoldomF=volA
11 10 2 eqeltrd φvoldomF
12 bddibl FMblFnvoldomFxydomFFyxF𝐿1
13 6 11 4 12 syl3anc φF𝐿1