Metamath Proof Explorer


Theorem cncfcnvcn

Description: Rewrite cmphaushmeo for functions on the complex numbers. (Contributed by Mario Carneiro, 19-Feb-2015)

Ref Expression
Hypotheses cncfcnvcn.j J=TopOpenfld
cncfcnvcn.k K=J𝑡X
Assertion cncfcnvcn KCompF:XcnYF:X1-1 ontoYF-1:YcnX

Proof

Step Hyp Ref Expression
1 cncfcnvcn.j J=TopOpenfld
2 cncfcnvcn.k K=J𝑡X
3 simpr KCompF:XcnYF:XcnY
4 cncfrss F:XcnYX
5 4 adantl KCompF:XcnYX
6 cncfrss2 F:XcnYY
7 6 adantl KCompF:XcnYY
8 eqid J𝑡Y=J𝑡Y
9 1 2 8 cncfcn XYXcnY=KCnJ𝑡Y
10 5 7 9 syl2anc KCompF:XcnYXcnY=KCnJ𝑡Y
11 3 10 eleqtrd KCompF:XcnYFKCnJ𝑡Y
12 ishmeo FKHomeoJ𝑡YFKCnJ𝑡YF-1J𝑡YCnK
13 12 baib FKCnJ𝑡YFKHomeoJ𝑡YF-1J𝑡YCnK
14 11 13 syl KCompF:XcnYFKHomeoJ𝑡YF-1J𝑡YCnK
15 1 cnfldtop JTop
16 1 cnfldtopon JTopOn
17 16 toponunii =J
18 17 restuni JTopXX=J𝑡X
19 15 5 18 sylancr KCompF:XcnYX=J𝑡X
20 2 unieqi K=J𝑡X
21 19 20 eqtr4di KCompF:XcnYX=K
22 21 f1oeq2d KCompF:XcnYF:X1-1 ontoJ𝑡YF:K1-1 ontoJ𝑡Y
23 17 restuni JTopYY=J𝑡Y
24 15 7 23 sylancr KCompF:XcnYY=J𝑡Y
25 24 f1oeq3d KCompF:XcnYF:X1-1 ontoYF:X1-1 ontoJ𝑡Y
26 simpl KCompF:XcnYKComp
27 1 cnfldhaus JHaus
28 cnex V
29 28 ssex YYV
30 7 29 syl KCompF:XcnYYV
31 resthaus JHausYVJ𝑡YHaus
32 27 30 31 sylancr KCompF:XcnYJ𝑡YHaus
33 eqid K=K
34 eqid J𝑡Y=J𝑡Y
35 33 34 cmphaushmeo KCompJ𝑡YHausFKCnJ𝑡YFKHomeoJ𝑡YF:K1-1 ontoJ𝑡Y
36 26 32 11 35 syl3anc KCompF:XcnYFKHomeoJ𝑡YF:K1-1 ontoJ𝑡Y
37 22 25 36 3bitr4d KCompF:XcnYF:X1-1 ontoYFKHomeoJ𝑡Y
38 1 8 2 cncfcn YXYcnX=J𝑡YCnK
39 7 5 38 syl2anc KCompF:XcnYYcnX=J𝑡YCnK
40 39 eleq2d KCompF:XcnYF-1:YcnXF-1J𝑡YCnK
41 14 37 40 3bitr4d KCompF:XcnYF:X1-1 ontoYF-1:YcnX