Metamath Proof Explorer


Theorem cncrng

Description: The complex numbers form a commutative ring. (Contributed by Mario Carneiro, 8-Jan-2015)

Ref Expression
Assertion cncrng fldCRing

Proof

Step Hyp Ref Expression
1 cnfldbas =Basefld
2 1 a1i =Basefld
3 cnfldadd +=+fld
4 3 a1i +=+fld
5 cnfldmul ×=fld
6 5 a1i ×=fld
7 addcl xyx+y
8 addass xyzx+y+z=x+y+z
9 0cn 0
10 addlid x0+x=x
11 negcl xx
12 addcom xx-x+x=x+x
13 11 12 mpancom x-x+x=x+x
14 negid xx+x=0
15 13 14 eqtrd x-x+x=0
16 1 3 7 8 9 10 11 15 isgrpi fldGrp
17 16 a1i fldGrp
18 mulcl xyxy
19 18 3adant1 xyxy
20 mulass xyzxyz=xyz
21 20 adantl xyzxyz=xyz
22 adddi xyzxy+z=xy+xz
23 22 adantl xyzxy+z=xy+xz
24 adddir xyzx+yz=xz+yz
25 24 adantl xyzx+yz=xz+yz
26 1cnd 1
27 mullid x1x=x
28 27 adantl x1x=x
29 mulrid xx1=x
30 29 adantl xx1=x
31 mulcom xyxy=yx
32 31 3adant1 xyxy=yx
33 2 4 6 17 19 21 23 25 26 28 30 32 iscrngd fldCRing
34 33 mptru fldCRing