| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cndprobval |  | 
						
							| 2 | 1 | oveq1d |  | 
						
							| 3 | 2 | adantr |  | 
						
							| 4 |  | unitsscn |  | 
						
							| 5 |  | simp1 |  | 
						
							| 6 |  | domprobsiga |  | 
						
							| 7 |  | inelsiga |  | 
						
							| 8 | 6 7 | syl3an1 |  | 
						
							| 9 |  | prob01 |  | 
						
							| 10 | 5 8 9 | syl2anc |  | 
						
							| 11 | 4 10 | sselid |  | 
						
							| 12 | 11 | adantr |  | 
						
							| 13 |  | prob01 |  | 
						
							| 14 | 13 | 3adant2 |  | 
						
							| 15 | 4 14 | sselid |  | 
						
							| 16 | 15 | adantr |  | 
						
							| 17 |  | simpr |  | 
						
							| 18 | 12 16 17 | divcan1d |  | 
						
							| 19 | 3 18 | eqtrd |  |