Metamath Proof Explorer


Theorem cndprobin

Description: An identity linking conditional probability and intersection. (Contributed by Thierry Arnoux, 13-Dec-2016) (Revised by Thierry Arnoux, 21-Jan-2017)

Ref Expression
Assertion cndprobin P Prob A dom P B dom P P B 0 cProb P A B P B = P A B

Proof

Step Hyp Ref Expression
1 cndprobval P Prob A dom P B dom P cProb P A B = P A B P B
2 1 oveq1d P Prob A dom P B dom P cProb P A B P B = P A B P B P B
3 2 adantr P Prob A dom P B dom P P B 0 cProb P A B P B = P A B P B P B
4 unitsscn 0 1
5 simp1 P Prob A dom P B dom P P Prob
6 domprobsiga P Prob dom P ran sigAlgebra
7 inelsiga dom P ran sigAlgebra A dom P B dom P A B dom P
8 6 7 syl3an1 P Prob A dom P B dom P A B dom P
9 prob01 P Prob A B dom P P A B 0 1
10 5 8 9 syl2anc P Prob A dom P B dom P P A B 0 1
11 4 10 sselid P Prob A dom P B dom P P A B
12 11 adantr P Prob A dom P B dom P P B 0 P A B
13 prob01 P Prob B dom P P B 0 1
14 13 3adant2 P Prob A dom P B dom P P B 0 1
15 4 14 sselid P Prob A dom P B dom P P B
16 15 adantr P Prob A dom P B dom P P B 0 P B
17 simpr P Prob A dom P B dom P P B 0 P B 0
18 12 16 17 divcan1d P Prob A dom P B dom P P B 0 P A B P B P B = P A B
19 3 18 eqtrd P Prob A dom P B dom P P B 0 cProb P A B P B = P A B