Metamath Proof Explorer


Theorem cnfcf

Description: Continuity of a function in terms of cluster points of a function. (Contributed by Jeff Hankins, 28-Nov-2009) (Revised by Stefan O'Rear, 9-Aug-2015)

Ref Expression
Assertion cnfcf JTopOnXKTopOnYFJCnKF:XYfFilXxJfClusfFxKfClusffF

Proof

Step Hyp Ref Expression
1 cncnp JTopOnXKTopOnYFJCnKF:XYxXFJCnPKx
2 simplr JTopOnXKTopOnYF:XYxXF:XY
3 cnpfcf JTopOnXKTopOnYxXFJCnPKxF:XYfFilXxJfClusfFxKfClusffF
4 3 ad4ant124 JTopOnXKTopOnYF:XYxXFJCnPKxF:XYfFilXxJfClusfFxKfClusffF
5 2 4 mpbirand JTopOnXKTopOnYF:XYxXFJCnPKxfFilXxJfClusfFxKfClusffF
6 5 ralbidva JTopOnXKTopOnYF:XYxXFJCnPKxxXfFilXxJfClusfFxKfClusffF
7 ralcom xXfFilXxJfClusfFxKfClusffFfFilXxXxJfClusfFxKfClusffF
8 eqid J=J
9 8 fclselbas xJfClusfxJ
10 toponuni JTopOnXX=J
11 10 ad2antrr JTopOnXKTopOnYF:XYX=J
12 11 eleq2d JTopOnXKTopOnYF:XYxXxJ
13 9 12 imbitrrid JTopOnXKTopOnYF:XYxJfClusfxX
14 13 pm4.71rd JTopOnXKTopOnYF:XYxJfClusfxXxJfClusf
15 14 imbi1d JTopOnXKTopOnYF:XYxJfClusfFxKfClusffFxXxJfClusfFxKfClusffF
16 impexp xXxJfClusfFxKfClusffFxXxJfClusfFxKfClusffF
17 15 16 bitrdi JTopOnXKTopOnYF:XYxJfClusfFxKfClusffFxXxJfClusfFxKfClusffF
18 17 ralbidv2 JTopOnXKTopOnYF:XYxJfClusfFxKfClusffFxXxJfClusfFxKfClusffF
19 18 ralbidv JTopOnXKTopOnYF:XYfFilXxJfClusfFxKfClusffFfFilXxXxJfClusfFxKfClusffF
20 7 19 bitr4id JTopOnXKTopOnYF:XYxXfFilXxJfClusfFxKfClusffFfFilXxJfClusfFxKfClusffF
21 6 20 bitrd JTopOnXKTopOnYF:XYxXFJCnPKxfFilXxJfClusfFxKfClusffF
22 21 pm5.32da JTopOnXKTopOnYF:XYxXFJCnPKxF:XYfFilXxJfClusfFxKfClusffF
23 1 22 bitrd JTopOnXKTopOnYFJCnKF:XYfFilXxJfClusfFxKfClusffF