| Step |
Hyp |
Ref |
Expression |
| 1 |
|
flfcntr.c |
|
| 2 |
|
flfcntr.b |
|
| 3 |
|
flfcntr.j |
|
| 4 |
|
flfcntr.a |
|
| 5 |
|
flfcntr.1 |
|
| 6 |
|
flfcntr.y |
|
| 7 |
|
fveq2 |
|
| 8 |
7
|
eleq1d |
|
| 9 |
|
oveq2 |
|
| 10 |
|
oveq2 |
|
| 11 |
10
|
fveq1d |
|
| 12 |
11
|
eleq2d |
|
| 13 |
9 12
|
raleqbidv |
|
| 14 |
1
|
toptopon |
|
| 15 |
3 14
|
sylib |
|
| 16 |
|
resttopon |
|
| 17 |
15 4 16
|
syl2anc |
|
| 18 |
|
cntop2 |
|
| 19 |
5 18
|
syl |
|
| 20 |
2
|
toptopon |
|
| 21 |
19 20
|
sylib |
|
| 22 |
|
cnflf |
|
| 23 |
17 21 22
|
syl2anc |
|
| 24 |
5 23
|
mpbid |
|
| 25 |
24
|
simprd |
|
| 26 |
1
|
sscls |
|
| 27 |
3 4 26
|
syl2anc |
|
| 28 |
27 6
|
sseldd |
|
| 29 |
4 6
|
sseldd |
|
| 30 |
|
trnei |
|
| 31 |
15 4 29 30
|
syl3anc |
|
| 32 |
28 31
|
mpbid |
|
| 33 |
13 25 32
|
rspcdva |
|
| 34 |
|
neiflim |
|
| 35 |
17 6 34
|
syl2anc |
|
| 36 |
6
|
snssd |
|
| 37 |
1
|
neitr |
|
| 38 |
3 4 36 37
|
syl3anc |
|
| 39 |
38
|
oveq2d |
|
| 40 |
35 39
|
eleqtrd |
|
| 41 |
8 33 40
|
rspcdva |
|