Step |
Hyp |
Ref |
Expression |
1 |
|
flfcntr.c |
|
2 |
|
flfcntr.b |
|
3 |
|
flfcntr.j |
|
4 |
|
flfcntr.a |
|
5 |
|
flfcntr.1 |
|
6 |
|
flfcntr.y |
|
7 |
|
fveq2 |
|
8 |
7
|
eleq1d |
|
9 |
|
oveq2 |
|
10 |
|
oveq2 |
|
11 |
10
|
fveq1d |
|
12 |
11
|
eleq2d |
|
13 |
9 12
|
raleqbidv |
|
14 |
1
|
toptopon |
|
15 |
3 14
|
sylib |
|
16 |
|
resttopon |
|
17 |
15 4 16
|
syl2anc |
|
18 |
|
cntop2 |
|
19 |
5 18
|
syl |
|
20 |
2
|
toptopon |
|
21 |
19 20
|
sylib |
|
22 |
|
cnflf |
|
23 |
17 21 22
|
syl2anc |
|
24 |
5 23
|
mpbid |
|
25 |
24
|
simprd |
|
26 |
1
|
sscls |
|
27 |
3 4 26
|
syl2anc |
|
28 |
27 6
|
sseldd |
|
29 |
4 6
|
sseldd |
|
30 |
|
trnei |
|
31 |
15 4 29 30
|
syl3anc |
|
32 |
28 31
|
mpbid |
|
33 |
13 25 32
|
rspcdva |
|
34 |
|
neiflim |
|
35 |
17 6 34
|
syl2anc |
|
36 |
6
|
snssd |
|
37 |
1
|
neitr |
|
38 |
3 4 36 37
|
syl3anc |
|
39 |
38
|
oveq2d |
|
40 |
35 39
|
eleqtrd |
|
41 |
8 33 40
|
rspcdva |
|