Metamath Proof Explorer


Theorem cnmpt1plusg

Description: Continuity of the group sum; analogue of cnmpt12f which cannot be used directly because +g is not a function. (Contributed by Mario Carneiro, 23-Aug-2015)

Ref Expression
Hypotheses tgpcn.j J = TopOpen G
cnmpt1plusg.p + ˙ = + G
cnmpt1plusg.g φ G TopMnd
cnmpt1plusg.k φ K TopOn X
cnmpt1plusg.a φ x X A K Cn J
cnmpt1plusg.b φ x X B K Cn J
Assertion cnmpt1plusg φ x X A + ˙ B K Cn J

Proof

Step Hyp Ref Expression
1 tgpcn.j J = TopOpen G
2 cnmpt1plusg.p + ˙ = + G
3 cnmpt1plusg.g φ G TopMnd
4 cnmpt1plusg.k φ K TopOn X
5 cnmpt1plusg.a φ x X A K Cn J
6 cnmpt1plusg.b φ x X B K Cn J
7 eqid Base G = Base G
8 1 7 tmdtopon G TopMnd J TopOn Base G
9 3 8 syl φ J TopOn Base G
10 cnf2 K TopOn X J TopOn Base G x X A K Cn J x X A : X Base G
11 4 9 5 10 syl3anc φ x X A : X Base G
12 11 fvmptelrn φ x X A Base G
13 cnf2 K TopOn X J TopOn Base G x X B K Cn J x X B : X Base G
14 4 9 6 13 syl3anc φ x X B : X Base G
15 14 fvmptelrn φ x X B Base G
16 eqid + 𝑓 G = + 𝑓 G
17 7 2 16 plusfval A Base G B Base G A + 𝑓 G B = A + ˙ B
18 12 15 17 syl2anc φ x X A + 𝑓 G B = A + ˙ B
19 18 mpteq2dva φ x X A + 𝑓 G B = x X A + ˙ B
20 1 16 tmdcn G TopMnd + 𝑓 G J × t J Cn J
21 3 20 syl φ + 𝑓 G J × t J Cn J
22 4 5 6 21 cnmpt12f φ x X A + 𝑓 G B K Cn J
23 19 22 eqeltrrd φ x X A + ˙ B K Cn J