Metamath Proof Explorer


Theorem cnmpt1plusg

Description: Continuity of the group sum; analogue of cnmpt12f which cannot be used directly because +g is not a function. (Contributed by Mario Carneiro, 23-Aug-2015)

Ref Expression
Hypotheses tgpcn.j J=TopOpenG
cnmpt1plusg.p +˙=+G
cnmpt1plusg.g φGTopMnd
cnmpt1plusg.k φKTopOnX
cnmpt1plusg.a φxXAKCnJ
cnmpt1plusg.b φxXBKCnJ
Assertion cnmpt1plusg φxXA+˙BKCnJ

Proof

Step Hyp Ref Expression
1 tgpcn.j J=TopOpenG
2 cnmpt1plusg.p +˙=+G
3 cnmpt1plusg.g φGTopMnd
4 cnmpt1plusg.k φKTopOnX
5 cnmpt1plusg.a φxXAKCnJ
6 cnmpt1plusg.b φxXBKCnJ
7 eqid BaseG=BaseG
8 1 7 tmdtopon GTopMndJTopOnBaseG
9 3 8 syl φJTopOnBaseG
10 cnf2 KTopOnXJTopOnBaseGxXAKCnJxXA:XBaseG
11 4 9 5 10 syl3anc φxXA:XBaseG
12 11 fvmptelcdm φxXABaseG
13 cnf2 KTopOnXJTopOnBaseGxXBKCnJxXB:XBaseG
14 4 9 6 13 syl3anc φxXB:XBaseG
15 14 fvmptelcdm φxXBBaseG
16 eqid +𝑓G=+𝑓G
17 7 2 16 plusfval ABaseGBBaseGA+𝑓GB=A+˙B
18 12 15 17 syl2anc φxXA+𝑓GB=A+˙B
19 18 mpteq2dva φxXA+𝑓GB=xXA+˙B
20 1 16 tmdcn GTopMnd+𝑓GJ×tJCnJ
21 3 20 syl φ+𝑓GJ×tJCnJ
22 4 5 6 21 cnmpt12f φxXA+𝑓GBKCnJ
23 19 22 eqeltrrd φxXA+˙BKCnJ