Metamath Proof Explorer


Theorem cnmsgnsubg

Description: The signs form a multiplicative subgroup of the complex numbers. (Contributed by Stefan O'Rear, 28-Aug-2015)

Ref Expression
Hypothesis cnmsgnsubg.m M=mulGrpfld𝑠0
Assertion cnmsgnsubg 11SubGrpM

Proof

Step Hyp Ref Expression
1 cnmsgnsubg.m M=mulGrpfld𝑠0
2 elpri x11x=1x=1
3 id x=1x=1
4 ax-1cn 1
5 3 4 eqeltrdi x=1x
6 id x=1x=1
7 neg1cn 1
8 6 7 eqeltrdi x=1x
9 5 8 jaoi x=1x=1x
10 2 9 syl x11x
11 ax-1ne0 10
12 11 a1i x=110
13 3 12 eqnetrd x=1x0
14 neg1ne0 10
15 14 a1i x=110
16 6 15 eqnetrd x=1x0
17 13 16 jaoi x=1x=1x0
18 2 17 syl x11x0
19 elpri y11y=1y=1
20 oveq12 x=1y=1xy=11
21 4 mulridi 11=1
22 1ex 1V
23 22 prid1 111
24 21 23 eqeltri 1111
25 20 24 eqeltrdi x=1y=1xy11
26 oveq12 x=1y=1xy=-11
27 7 mulridi -11=1
28 negex 1V
29 28 prid2 111
30 27 29 eqeltri -1111
31 26 30 eqeltrdi x=1y=1xy11
32 oveq12 x=1y=1xy=1-1
33 7 mullidi 1-1=1
34 33 29 eqeltri 1-111
35 32 34 eqeltrdi x=1y=1xy11
36 oveq12 x=1y=1xy=-1-1
37 neg1mulneg1e1 -1-1=1
38 37 23 eqeltri -1-111
39 36 38 eqeltrdi x=1y=1xy11
40 25 31 35 39 ccase x=1x=1y=1y=1xy11
41 2 19 40 syl2an x11y11xy11
42 oveq2 x=11x=11
43 1div1e1 11=1
44 43 23 eqeltri 1111
45 42 44 eqeltrdi x=11x11
46 oveq2 x=11x=11
47 divneg2 111011=11
48 4 4 11 47 mp3an 11=11
49 43 negeqi 11=1
50 48 49 eqtr3i 11=1
51 50 29 eqeltri 1111
52 46 51 eqeltrdi x=11x11
53 45 52 jaoi x=1x=11x11
54 2 53 syl x111x11
55 1 10 18 41 23 54 cnmsubglem 11SubGrpM