Metamath Proof Explorer


Theorem cnpflfi

Description: Forward direction of cnpflf . (Contributed by Mario Carneiro, 9-Apr-2015) (Revised by Stefan O'Rear, 9-Aug-2015)

Ref Expression
Assertion cnpflfi AJfLimLFJCnPKAFAKfLimfLF

Proof

Step Hyp Ref Expression
1 eqid J=J
2 eqid K=K
3 1 2 cnpf FJCnPKAF:JK
4 3 adantl AJfLimLFJCnPKAF:JK
5 1 flimelbas AJfLimLAJ
6 5 adantr AJfLimLFJCnPKAAJ
7 4 6 ffvelcdmd AJfLimLFJCnPKAFAK
8 simplr AJfLimLFJCnPKAxKFAxFJCnPKA
9 simprl AJfLimLFJCnPKAxKFAxxK
10 simprr AJfLimLFJCnPKAxKFAxFAx
11 cnpimaex FJCnPKAxKFAxyJAyFyx
12 8 9 10 11 syl3anc AJfLimLFJCnPKAxKFAxyJAyFyx
13 anass yJAyFyxyJAyFyx
14 simpl AJfLimLFJCnPKAAJfLimL
15 flimtop AJfLimLJTop
16 15 adantr AJfLimLFJCnPKAJTop
17 toptopon2 JTopJTopOnJ
18 16 17 sylib AJfLimLFJCnPKAJTopOnJ
19 1 flimfil AJfLimLLFilJ
20 19 adantr AJfLimLFJCnPKALFilJ
21 flimopn JTopOnJLFilJAJfLimLAJyJAyyL
22 18 20 21 syl2anc AJfLimLFJCnPKAAJfLimLAJyJAyyL
23 14 22 mpbid AJfLimLFJCnPKAAJyJAyyL
24 23 simprd AJfLimLFJCnPKAyJAyyL
25 24 adantr AJfLimLFJCnPKAxKFAxyJAyyL
26 25 r19.21bi AJfLimLFJCnPKAxKFAxyJAyyL
27 26 expimpd AJfLimLFJCnPKAxKFAxyJAyyL
28 27 anim1d AJfLimLFJCnPKAxKFAxyJAyFyxyLFyx
29 13 28 biimtrrid AJfLimLFJCnPKAxKFAxyJAyFyxyLFyx
30 29 reximdv2 AJfLimLFJCnPKAxKFAxyJAyFyxyLFyx
31 12 30 mpd AJfLimLFJCnPKAxKFAxyLFyx
32 31 expr AJfLimLFJCnPKAxKFAxyLFyx
33 32 ralrimiva AJfLimLFJCnPKAxKFAxyLFyx
34 cnptop2 FJCnPKAKTop
35 34 adantl AJfLimLFJCnPKAKTop
36 toptopon2 KTopKTopOnK
37 35 36 sylib AJfLimLFJCnPKAKTopOnK
38 isflf KTopOnKLFilJF:JKFAKfLimfLFFAKxKFAxyLFyx
39 37 20 4 38 syl3anc AJfLimLFJCnPKAFAKfLimfLFFAKxKFAxyLFyx
40 7 33 39 mpbir2and AJfLimLFJCnPKAFAKfLimfLF