Metamath Proof Explorer


Theorem coe1id

Description: Coefficient vector of the unit polynomial. (Contributed by AV, 9-Aug-2019)

Ref Expression
Hypotheses coe1id.p P=Poly1R
coe1id.i I=1P
coe1id.0 0˙=0R
coe1id.1 1˙=1R
Assertion coe1id RRingcoe1I=x0ifx=01˙0˙

Proof

Step Hyp Ref Expression
1 coe1id.p P=Poly1R
2 coe1id.i I=1P
3 coe1id.0 0˙=0R
4 coe1id.1 1˙=1R
5 eqid algScP=algScP
6 1 5 4 2 ply1scl1 RRingalgScP1˙=I
7 6 eqcomd RRingI=algScP1˙
8 7 fveq2d RRingcoe1I=coe1algScP1˙
9 eqid BaseR=BaseR
10 9 4 ringidcl RRing1˙BaseR
11 1 5 9 3 coe1scl RRing1˙BaseRcoe1algScP1˙=x0ifx=01˙0˙
12 10 11 mpdan RRingcoe1algScP1˙=x0ifx=01˙0˙
13 8 12 eqtrd RRingcoe1I=x0ifx=01˙0˙