Metamath Proof Explorer


Theorem cofss

Description: Cofinality for a subset. (Contributed by Scott Fenton, 13-Mar-2025)

Ref Expression
Hypotheses cofss.1 φANo
cofss.2 φBA
Assertion cofss φxByAxsy

Proof

Step Hyp Ref Expression
1 cofss.1 φANo
2 cofss.2 φBA
3 2 sselda φzBzA
4 2 1 sstrd φBNo
5 4 sselda φzBzNo
6 slerflex zNozsz
7 5 6 syl φzBzsz
8 breq2 y=zzsyzsz
9 8 rspcev zAzszyAzsy
10 3 7 9 syl2anc φzByAzsy
11 10 ralrimiva φzByAzsy
12 breq1 x=zxsyzsy
13 12 rexbidv x=zyAxsyyAzsy
14 13 cbvralvw xByAxsyzByAzsy
15 11 14 sylibr φxByAxsy