Step |
Hyp |
Ref |
Expression |
1 |
|
simpl2 |
|
2 |
|
simpl1 |
|
3 |
1 2
|
subcld |
|
4 |
|
simpr3 |
|
5 |
|
simpr1 |
|
6 |
3 4 5
|
subdid |
|
7 |
1 2 4
|
subdird |
|
8 |
1 2 5
|
subdird |
|
9 |
7 8
|
oveq12d |
|
10 |
|
simp2 |
|
11 |
|
simp3 |
|
12 |
|
mulcl |
|
13 |
10 11 12
|
syl2an |
|
14 |
|
simp1 |
|
15 |
|
mulcl |
|
16 |
14 11 15
|
syl2an |
|
17 |
13 16
|
subcld |
|
18 |
|
simp1 |
|
19 |
|
mulcl |
|
20 |
10 18 19
|
syl2an |
|
21 |
|
mulcl |
|
22 |
14 18 21
|
syl2an |
|
23 |
17 20 22
|
subsub3d |
|
24 |
17 22 20
|
addsubd |
|
25 |
9 23 24
|
3eqtrrd |
|
26 |
13 16 20
|
subsub4d |
|
27 |
26
|
oveq1d |
|
28 |
6 25 27
|
3eqtr2d |
|
29 |
|
simpr2 |
|
30 |
29 5
|
subcld |
|
31 |
|
simpl3 |
|
32 |
31 2
|
subcld |
|
33 |
30 32
|
mulcomd |
|
34 |
32 29 5
|
subdid |
|
35 |
31 2 29
|
subdird |
|
36 |
31 2 5
|
subdird |
|
37 |
35 36
|
oveq12d |
|
38 |
|
simp3 |
|
39 |
|
simp2 |
|
40 |
|
mulcl |
|
41 |
38 39 40
|
syl2an |
|
42 |
|
mulcl |
|
43 |
14 39 42
|
syl2an |
|
44 |
41 43
|
subcld |
|
45 |
|
mulcl |
|
46 |
38 18 45
|
syl2an |
|
47 |
44 46 22
|
subsub3d |
|
48 |
44 22 46
|
addsubd |
|
49 |
37 47 48
|
3eqtrrd |
|
50 |
41 43 46
|
subsub4d |
|
51 |
50
|
oveq1d |
|
52 |
49 51
|
eqtr3d |
|
53 |
33 34 52
|
3eqtrd |
|
54 |
28 53
|
eqeq12d |
|
55 |
16 20
|
addcld |
|
56 |
13 55
|
subcld |
|
57 |
43 46
|
addcld |
|
58 |
41 57
|
subcld |
|
59 |
56 58 22
|
addcan2d |
|
60 |
54 59
|
bitrd |
|