Metamath Proof Explorer


Theorem colinearalglem1

Description: Lemma for colinearalg . Expand out a multiplication. (Contributed by Scott Fenton, 24-Jun-2013)

Ref Expression
Assertion colinearalglem1 ABCDEFBAFD=EDCABFAF+BD=CEAE+CD

Proof

Step Hyp Ref Expression
1 simpl2 ABCDEFB
2 simpl1 ABCDEFA
3 1 2 subcld ABCDEFBA
4 simpr3 ABCDEFF
5 simpr1 ABCDEFD
6 3 4 5 subdid ABCDEFBAFD=BAFBAD
7 1 2 4 subdird ABCDEFBAF=BFAF
8 1 2 5 subdird ABCDEFBAD=BDAD
9 7 8 oveq12d ABCDEFBAFBAD=BF-AF-BDAD
10 simp2 ABCB
11 simp3 DEFF
12 mulcl BFBF
13 10 11 12 syl2an ABCDEFBF
14 simp1 ABCA
15 mulcl AFAF
16 14 11 15 syl2an ABCDEFAF
17 13 16 subcld ABCDEFBFAF
18 simp1 DEFD
19 mulcl BDBD
20 10 18 19 syl2an ABCDEFBD
21 mulcl ADAD
22 14 18 21 syl2an ABCDEFAD
23 17 20 22 subsub3d ABCDEFBF-AF-BDAD=BFAF+AD-BD
24 17 22 20 addsubd ABCDEFBFAF+AD-BD=BFAF-BD+AD
25 9 23 24 3eqtrrd ABCDEFBFAF-BD+AD=BAFBAD
26 13 16 20 subsub4d ABCDEFBF-AF-BD=BFAF+BD
27 26 oveq1d ABCDEFBFAF-BD+AD=BF-AF+BD+AD
28 6 25 27 3eqtr2d ABCDEFBAFD=BF-AF+BD+AD
29 simpr2 ABCDEFE
30 29 5 subcld ABCDEFED
31 simpl3 ABCDEFC
32 31 2 subcld ABCDEFCA
33 30 32 mulcomd ABCDEFEDCA=CAED
34 32 29 5 subdid ABCDEFCAED=CAECAD
35 31 2 29 subdird ABCDEFCAE=CEAE
36 31 2 5 subdird ABCDEFCAD=CDAD
37 35 36 oveq12d ABCDEFCAECAD=CE-AE-CDAD
38 simp3 ABCC
39 simp2 DEFE
40 mulcl CECE
41 38 39 40 syl2an ABCDEFCE
42 mulcl AEAE
43 14 39 42 syl2an ABCDEFAE
44 41 43 subcld ABCDEFCEAE
45 mulcl CDCD
46 38 18 45 syl2an ABCDEFCD
47 44 46 22 subsub3d ABCDEFCE-AE-CDAD=CEAE+AD-CD
48 44 22 46 addsubd ABCDEFCEAE+AD-CD=CEAE-CD+AD
49 37 47 48 3eqtrrd ABCDEFCEAE-CD+AD=CAECAD
50 41 43 46 subsub4d ABCDEFCE-AE-CD=CEAE+CD
51 50 oveq1d ABCDEFCEAE-CD+AD=CE-AE+CD+AD
52 49 51 eqtr3d ABCDEFCAECAD=CE-AE+CD+AD
53 33 34 52 3eqtrd ABCDEFEDCA=CE-AE+CD+AD
54 28 53 eqeq12d ABCDEFBAFD=EDCABF-AF+BD+AD=CE-AE+CD+AD
55 16 20 addcld ABCDEFAF+BD
56 13 55 subcld ABCDEFBFAF+BD
57 43 46 addcld ABCDEFAE+CD
58 41 57 subcld ABCDEFCEAE+CD
59 56 58 22 addcan2d ABCDEFBF-AF+BD+AD=CE-AE+CD+ADBFAF+BD=CEAE+CD
60 54 59 bitrd ABCDEFBAFD=EDCABFAF+BD=CEAE+CD