Description: Lemma for colinearalg . Expand out a multiplication. (Contributed by Scott Fenton, 24-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | colinearalglem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 | |
|
2 | simpl1 | |
|
3 | 1 2 | subcld | |
4 | simpr3 | |
|
5 | simpr1 | |
|
6 | 3 4 5 | subdid | |
7 | 1 2 4 | subdird | |
8 | 1 2 5 | subdird | |
9 | 7 8 | oveq12d | |
10 | simp2 | |
|
11 | simp3 | |
|
12 | mulcl | |
|
13 | 10 11 12 | syl2an | |
14 | simp1 | |
|
15 | mulcl | |
|
16 | 14 11 15 | syl2an | |
17 | 13 16 | subcld | |
18 | simp1 | |
|
19 | mulcl | |
|
20 | 10 18 19 | syl2an | |
21 | mulcl | |
|
22 | 14 18 21 | syl2an | |
23 | 17 20 22 | subsub3d | |
24 | 17 22 20 | addsubd | |
25 | 9 23 24 | 3eqtrrd | |
26 | 13 16 20 | subsub4d | |
27 | 26 | oveq1d | |
28 | 6 25 27 | 3eqtr2d | |
29 | simpr2 | |
|
30 | 29 5 | subcld | |
31 | simpl3 | |
|
32 | 31 2 | subcld | |
33 | 30 32 | mulcomd | |
34 | 32 29 5 | subdid | |
35 | 31 2 29 | subdird | |
36 | 31 2 5 | subdird | |
37 | 35 36 | oveq12d | |
38 | simp3 | |
|
39 | simp2 | |
|
40 | mulcl | |
|
41 | 38 39 40 | syl2an | |
42 | mulcl | |
|
43 | 14 39 42 | syl2an | |
44 | 41 43 | subcld | |
45 | mulcl | |
|
46 | 38 18 45 | syl2an | |
47 | 44 46 22 | subsub3d | |
48 | 44 22 46 | addsubd | |
49 | 37 47 48 | 3eqtrrd | |
50 | 41 43 46 | subsub4d | |
51 | 50 | oveq1d | |
52 | 49 51 | eqtr3d | |
53 | 33 34 52 | 3eqtrd | |
54 | 28 53 | eqeq12d | |
55 | 16 20 | addcld | |
56 | 13 55 | subcld | |
57 | 43 46 | addcld | |
58 | 41 57 | subcld | |
59 | 56 58 22 | addcan2d | |
60 | 54 59 | bitrd | |