Description: Complementation is an antiautomorphism on power set lattices. (Contributed by Stefan O'Rear, 4-Nov-2014) (Proof shortened by Mario Carneiro, 17-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | compss.a | |
|
Assertion | compssiso | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | compss.a | |
|
2 | difexg | |
|
3 | 2 | ralrimivw | |
4 | 1 | fnmpt | |
5 | 3 4 | syl | |
6 | 1 | compsscnv | |
7 | 6 | fneq1i | |
8 | 5 7 | sylibr | |
9 | dff1o4 | |
|
10 | 5 8 9 | sylanbrc | |
11 | elpwi | |
|
12 | 11 | ad2antll | |
13 | 1 | isf34lem1 | |
14 | 12 13 | syldan | |
15 | elpwi | |
|
16 | 15 | ad2antrl | |
17 | 1 | isf34lem1 | |
18 | 16 17 | syldan | |
19 | 14 18 | psseq12d | |
20 | difss | |
|
21 | pssdifcom1 | |
|
22 | 12 20 21 | sylancl | |
23 | dfss4 | |
|
24 | 16 23 | sylib | |
25 | 24 | psseq1d | |
26 | 19 22 25 | 3bitrrd | |
27 | vex | |
|
28 | 27 | brrpss | |
29 | fvex | |
|
30 | 29 | brrpss | |
31 | 26 28 30 | 3bitr4g | |
32 | relrpss | |
|
33 | 32 | relbrcnv | |
34 | 31 33 | bitr4di | |
35 | 34 | ralrimivva | |
36 | df-isom | |
|
37 | 10 35 36 | sylanbrc | |