Metamath Proof Explorer


Theorem compssiso

Description: Complementation is an antiautomorphism on power set lattices. (Contributed by Stefan O'Rear, 4-Nov-2014) (Proof shortened by Mario Carneiro, 17-May-2015)

Ref Expression
Hypothesis compss.a F=x𝒫AAx
Assertion compssiso AVFIsom[⊂],[⊂]-1𝒫A𝒫A

Proof

Step Hyp Ref Expression
1 compss.a F=x𝒫AAx
2 difexg AVAxV
3 2 ralrimivw AVx𝒫AAxV
4 1 fnmpt x𝒫AAxVFFn𝒫A
5 3 4 syl AVFFn𝒫A
6 1 compsscnv F-1=F
7 6 fneq1i F-1Fn𝒫AFFn𝒫A
8 5 7 sylibr AVF-1Fn𝒫A
9 dff1o4 F:𝒫A1-1 onto𝒫AFFn𝒫AF-1Fn𝒫A
10 5 8 9 sylanbrc AVF:𝒫A1-1 onto𝒫A
11 elpwi b𝒫AbA
12 11 ad2antll AVa𝒫Ab𝒫AbA
13 1 isf34lem1 AVbAFb=Ab
14 12 13 syldan AVa𝒫Ab𝒫AFb=Ab
15 elpwi a𝒫AaA
16 15 ad2antrl AVa𝒫Ab𝒫AaA
17 1 isf34lem1 AVaAFa=Aa
18 16 17 syldan AVa𝒫Ab𝒫AFa=Aa
19 14 18 psseq12d AVa𝒫Ab𝒫AFbFaAbAa
20 difss AaA
21 pssdifcom1 bAAaAAbAaAAab
22 12 20 21 sylancl AVa𝒫Ab𝒫AAbAaAAab
23 dfss4 aAAAa=a
24 16 23 sylib AVa𝒫Ab𝒫AAAa=a
25 24 psseq1d AVa𝒫Ab𝒫AAAabab
26 19 22 25 3bitrrd AVa𝒫Ab𝒫AabFbFa
27 vex bV
28 27 brrpss a[⊂]bab
29 fvex FaV
30 29 brrpss Fb[⊂]FaFbFa
31 26 28 30 3bitr4g AVa𝒫Ab𝒫Aa[⊂]bFb[⊂]Fa
32 relrpss Rel[⊂]
33 32 relbrcnv Fa[⊂]-1FbFb[⊂]Fa
34 31 33 bitr4di AVa𝒫Ab𝒫Aa[⊂]bFa[⊂]-1Fb
35 34 ralrimivva AVa𝒫Ab𝒫Aa[⊂]bFa[⊂]-1Fb
36 df-isom FIsom[⊂],[⊂]-1𝒫A𝒫AF:𝒫A1-1 onto𝒫Aa𝒫Ab𝒫Aa[⊂]bFa[⊂]-1Fb
37 10 35 36 sylanbrc AVFIsom[⊂],[⊂]-1𝒫A𝒫A