Metamath Proof Explorer


Theorem cos2t

Description: Double-angle formula for cosine. (Contributed by Paul Chapman, 24-Jan-2008)

Ref Expression
Assertion cos2t Acos2A=2cosA21

Proof

Step Hyp Ref Expression
1 coscl AcosA
2 1 sqcld AcosA2
3 ax-1cn 1
4 subsub3 cosA21cosA2cosA21cosA2=cosA2+cosA2-1
5 3 4 mp3an2 cosA2cosA2cosA21cosA2=cosA2+cosA2-1
6 2 2 5 syl2anc AcosA21cosA2=cosA2+cosA2-1
7 cosadd AAcosA+A=cosAcosAsinAsinA
8 7 anidms AcosA+A=cosAcosAsinAsinA
9 2times A2A=A+A
10 9 fveq2d Acos2A=cosA+A
11 1 sqvald AcosA2=cosAcosA
12 sincl AsinA
13 12 sqvald AsinA2=sinAsinA
14 11 13 oveq12d AcosA2sinA2=cosAcosAsinAsinA
15 8 10 14 3eqtr4d Acos2A=cosA2sinA2
16 12 sqcld AsinA2
17 16 2 addcomd AsinA2+cosA2=cosA2+sinA2
18 sincossq AsinA2+cosA2=1
19 17 18 eqtr3d AcosA2+sinA2=1
20 subadd 1cosA2sinA21cosA2=sinA2cosA2+sinA2=1
21 3 2 16 20 mp3an2i A1cosA2=sinA2cosA2+sinA2=1
22 19 21 mpbird A1cosA2=sinA2
23 22 oveq2d AcosA21cosA2=cosA2sinA2
24 15 23 eqtr4d Acos2A=cosA21cosA2
25 2 2timesd A2cosA2=cosA2+cosA2
26 25 oveq1d A2cosA21=cosA2+cosA2-1
27 6 24 26 3eqtr4d Acos2A=2cosA21