| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cosargd.1 |  | 
						
							| 2 |  | cosargd.2 |  | 
						
							| 3 | 1 | cjcld |  | 
						
							| 4 | 1 3 | addcld |  | 
						
							| 5 | 1 | abscld |  | 
						
							| 6 | 5 | recnd |  | 
						
							| 7 |  | 2cnd |  | 
						
							| 8 | 1 2 | absne0d |  | 
						
							| 9 |  | 2ne0 |  | 
						
							| 10 | 9 | a1i |  | 
						
							| 11 | 4 6 7 8 10 | divdiv32d |  | 
						
							| 12 | 1 2 | logcld |  | 
						
							| 13 | 12 | imcld |  | 
						
							| 14 | 13 | recnd |  | 
						
							| 15 |  | cosval |  | 
						
							| 16 | 14 15 | syl |  | 
						
							| 17 |  | efiarg |  | 
						
							| 18 | 1 2 17 | syl2anc |  | 
						
							| 19 |  | ax-icn |  | 
						
							| 20 | 19 | a1i |  | 
						
							| 21 | 20 14 | mulcld |  | 
						
							| 22 |  | efcj |  | 
						
							| 23 | 21 22 | syl |  | 
						
							| 24 | 20 14 | cjmuld |  | 
						
							| 25 |  | cji |  | 
						
							| 26 | 25 | a1i |  | 
						
							| 27 | 13 | cjred |  | 
						
							| 28 | 26 27 | oveq12d |  | 
						
							| 29 | 24 28 | eqtrd |  | 
						
							| 30 | 29 | fveq2d |  | 
						
							| 31 | 18 | fveq2d |  | 
						
							| 32 | 23 30 31 | 3eqtr3d |  | 
						
							| 33 | 1 6 8 | cjdivd |  | 
						
							| 34 | 5 | cjred |  | 
						
							| 35 | 34 | oveq2d |  | 
						
							| 36 | 32 33 35 | 3eqtrd |  | 
						
							| 37 | 18 36 | oveq12d |  | 
						
							| 38 | 1 3 6 8 | divdird |  | 
						
							| 39 | 37 38 | eqtr4d |  | 
						
							| 40 | 39 | oveq1d |  | 
						
							| 41 | 16 40 | eqtrd |  | 
						
							| 42 |  | reval |  | 
						
							| 43 | 1 42 | syl |  | 
						
							| 44 | 43 | oveq1d |  | 
						
							| 45 | 11 41 44 | 3eqtr4d |  |