Metamath Proof Explorer


Theorem cosargd

Description: The cosine of the argument is the quotient of the real part and the absolute value. Compare to efiarg . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses cosargd.1 φX
cosargd.2 φX0
Assertion cosargd φcoslogX=XX

Proof

Step Hyp Ref Expression
1 cosargd.1 φX
2 cosargd.2 φX0
3 1 cjcld φX
4 1 3 addcld φX+X
5 1 abscld φX
6 5 recnd φX
7 2cnd φ2
8 1 2 absne0d φX0
9 2ne0 20
10 9 a1i φ20
11 4 6 7 8 10 divdiv32d φX+XX2=X+X2X
12 1 2 logcld φlogX
13 12 imcld φlogX
14 13 recnd φlogX
15 cosval logXcoslogX=eilogX+eilogX2
16 14 15 syl φcoslogX=eilogX+eilogX2
17 efiarg XX0eilogX=XX
18 1 2 17 syl2anc φeilogX=XX
19 ax-icn i
20 19 a1i φi
21 20 14 mulcld φilogX
22 efcj ilogXeilogX=eilogX
23 21 22 syl φeilogX=eilogX
24 20 14 cjmuld φilogX=ilogX
25 cji i=i
26 25 a1i φi=i
27 13 cjred φlogX=logX
28 26 27 oveq12d φilogX=ilogX
29 24 28 eqtrd φilogX=ilogX
30 29 fveq2d φeilogX=eilogX
31 18 fveq2d φeilogX=XX
32 23 30 31 3eqtr3d φeilogX=XX
33 1 6 8 cjdivd φXX=XX
34 5 cjred φX=X
35 34 oveq2d φXX=XX
36 32 33 35 3eqtrd φeilogX=XX
37 18 36 oveq12d φeilogX+eilogX=XX+XX
38 1 3 6 8 divdird φX+XX=XX+XX
39 37 38 eqtr4d φeilogX+eilogX=X+XX
40 39 oveq1d φeilogX+eilogX2=X+XX2
41 16 40 eqtrd φcoslogX=X+XX2
42 reval XX=X+X2
43 1 42 syl φX=X+X2
44 43 oveq1d φXX=X+X2X
45 11 41 44 3eqtr4d φcoslogX=XX