| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cotval |
|
| 2 |
1
|
oveq1d |
|
| 3 |
2
|
oveq2d |
|
| 4 |
|
sincossq |
|
| 5 |
4
|
oveq1d |
|
| 6 |
5
|
adantr |
|
| 7 |
|
sincl |
|
| 8 |
7
|
sqcld |
|
| 9 |
8
|
adantr |
|
| 10 |
|
sqne0 |
|
| 11 |
7 10
|
syl |
|
| 12 |
11
|
biimpar |
|
| 13 |
9 12
|
dividd |
|
| 14 |
13
|
oveq1d |
|
| 15 |
|
coscl |
|
| 16 |
15
|
sqcld |
|
| 17 |
16
|
adantr |
|
| 18 |
9 17 9 12
|
divdird |
|
| 19 |
15 7
|
jca |
|
| 20 |
|
2nn0 |
|
| 21 |
|
expdiv |
|
| 22 |
20 21
|
mp3an3 |
|
| 23 |
22
|
anassrs |
|
| 24 |
19 23
|
sylan |
|
| 25 |
24
|
oveq2d |
|
| 26 |
14 18 25
|
3eqtr4rd |
|
| 27 |
|
cscval |
|
| 28 |
27
|
oveq1d |
|
| 29 |
|
ax-1cn |
|
| 30 |
|
expdiv |
|
| 31 |
29 20 30
|
mp3an13 |
|
| 32 |
7 31
|
sylan |
|
| 33 |
|
sq1 |
|
| 34 |
33
|
oveq1i |
|
| 35 |
32 34
|
eqtrdi |
|
| 36 |
28 35
|
eqtrd |
|
| 37 |
6 26 36
|
3eqtr4rd |
|
| 38 |
3 37
|
eqtr4d |
|