| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cphpyth.v |
|
| 2 |
|
cphpyth.h |
|
| 3 |
|
cphpyth.p |
|
| 4 |
|
cphpyth.n |
|
| 5 |
|
cphpyth.w |
|
| 6 |
|
cphpyth.a |
|
| 7 |
|
cphpyth.b |
|
| 8 |
2 1 3 5 6 7 6 7
|
cph2di |
|
| 9 |
8
|
adantr |
|
| 10 |
|
simpr |
|
| 11 |
2 1
|
cphorthcom |
|
| 12 |
5 6 7 11
|
syl3anc |
|
| 13 |
12
|
biimpa |
|
| 14 |
10 13
|
oveq12d |
|
| 15 |
|
00id |
|
| 16 |
14 15
|
eqtrdi |
|
| 17 |
16
|
oveq2d |
|
| 18 |
1 2
|
cphipcl |
|
| 19 |
5 6 6 18
|
syl3anc |
|
| 20 |
1 2
|
cphipcl |
|
| 21 |
5 7 7 20
|
syl3anc |
|
| 22 |
19 21
|
addcld |
|
| 23 |
22
|
addridd |
|
| 24 |
23
|
adantr |
|
| 25 |
9 17 24
|
3eqtrd |
|
| 26 |
|
cphngp |
|
| 27 |
|
ngpgrp |
|
| 28 |
5 26 27
|
3syl |
|
| 29 |
1 3 28 6 7
|
grpcld |
|
| 30 |
1 2 4
|
nmsq |
|
| 31 |
5 29 30
|
syl2anc |
|
| 32 |
31
|
adantr |
|
| 33 |
1 2 4
|
nmsq |
|
| 34 |
5 6 33
|
syl2anc |
|
| 35 |
1 2 4
|
nmsq |
|
| 36 |
5 7 35
|
syl2anc |
|
| 37 |
34 36
|
oveq12d |
|
| 38 |
37
|
adantr |
|
| 39 |
25 32 38
|
3eqtr4d |
|