Description: The pythagorean theorem for a subcomplex pre-Hilbert space. The square of the norm of the sum of two orthogonal vectors (i.e., whose inner product is 0) is the sum of the squares of their norms. Problem 2 in Kreyszig p. 135. This is Metamath 100 proof #4. (Contributed by NM, 17-Apr-2008) (Revised by SN, 22-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cphpyth.v | |
|
cphpyth.h | |
||
cphpyth.p | |
||
cphpyth.n | |
||
cphpyth.w | |
||
cphpyth.a | |
||
cphpyth.b | |
||
Assertion | cphpyth | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cphpyth.v | |
|
2 | cphpyth.h | |
|
3 | cphpyth.p | |
|
4 | cphpyth.n | |
|
5 | cphpyth.w | |
|
6 | cphpyth.a | |
|
7 | cphpyth.b | |
|
8 | 2 1 3 5 6 7 6 7 | cph2di | |
9 | 8 | adantr | |
10 | simpr | |
|
11 | 2 1 | cphorthcom | |
12 | 5 6 7 11 | syl3anc | |
13 | 12 | biimpa | |
14 | 10 13 | oveq12d | |
15 | 00id | |
|
16 | 14 15 | eqtrdi | |
17 | 16 | oveq2d | |
18 | 1 2 | cphipcl | |
19 | 5 6 6 18 | syl3anc | |
20 | 1 2 | cphipcl | |
21 | 5 7 7 20 | syl3anc | |
22 | 19 21 | addcld | |
23 | 22 | addridd | |
24 | 23 | adantr | |
25 | 9 17 24 | 3eqtrd | |
26 | cphngp | |
|
27 | ngpgrp | |
|
28 | 5 26 27 | 3syl | |
29 | 1 3 28 6 7 | grpcld | |
30 | 1 2 4 | nmsq | |
31 | 5 29 30 | syl2anc | |
32 | 31 | adantr | |
33 | 1 2 4 | nmsq | |
34 | 5 6 33 | syl2anc | |
35 | 1 2 4 | nmsq | |
36 | 5 7 35 | syl2anc | |
37 | 34 36 | oveq12d | |
38 | 37 | adantr | |
39 | 25 32 38 | 3eqtr4d | |