Metamath Proof Explorer


Theorem cply1coe0

Description: All but the first coefficient of a constant polynomial ( i.e. a "lifted scalar") are zero. (Contributed by AV, 16-Nov-2019)

Ref Expression
Hypotheses cply1coe0.k K=BaseR
cply1coe0.0 0˙=0R
cply1coe0.p P=Poly1R
cply1coe0.b B=BaseP
cply1coe0.a A=algScP
Assertion cply1coe0 RRingSKncoe1ASn=0˙

Proof

Step Hyp Ref Expression
1 cply1coe0.k K=BaseR
2 cply1coe0.0 0˙=0R
3 cply1coe0.p P=Poly1R
4 cply1coe0.b B=BaseP
5 cply1coe0.a A=algScP
6 3 5 1 2 coe1scl RRingSKcoe1AS=k0ifk=0S0˙
7 6 adantr RRingSKncoe1AS=k0ifk=0S0˙
8 nnne0 nn0
9 8 neneqd n¬n=0
10 9 adantl RRingSKn¬n=0
11 10 adantr RRingSKnk=n¬n=0
12 eqeq1 k=nk=0n=0
13 12 notbid k=n¬k=0¬n=0
14 13 adantl RRingSKnk=n¬k=0¬n=0
15 11 14 mpbird RRingSKnk=n¬k=0
16 15 iffalsed RRingSKnk=nifk=0S0˙=0˙
17 nnnn0 nn0
18 17 adantl RRingSKnn0
19 2 fvexi 0˙V
20 19 a1i RRingSKn0˙V
21 7 16 18 20 fvmptd RRingSKncoe1ASn=0˙
22 21 ralrimiva RRingSKncoe1ASn=0˙