| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cramer.a |  | 
						
							| 2 |  | cramer.b |  | 
						
							| 3 |  | cramer.v |  | 
						
							| 4 |  | cramer.d |  | 
						
							| 5 |  | cramer.x |  | 
						
							| 6 |  | cramer.q |  | 
						
							| 7 | 1 | fveq2i |  | 
						
							| 8 | 2 7 | eqtri |  | 
						
							| 9 |  | fvoveq1 |  | 
						
							| 10 | 8 9 | eqtrid |  | 
						
							| 11 | 10 | adantr |  | 
						
							| 12 | 11 | eleq2d |  | 
						
							| 13 |  | mat0dimbas0 |  | 
						
							| 14 | 13 | eleq2d |  | 
						
							| 15 | 14 | adantl |  | 
						
							| 16 | 12 15 | bitrd |  | 
						
							| 17 | 3 | a1i |  | 
						
							| 18 |  | oveq2 |  | 
						
							| 19 | 18 | adantr |  | 
						
							| 20 |  | fvex |  | 
						
							| 21 |  | map0e |  | 
						
							| 22 | 20 21 | mp1i |  | 
						
							| 23 | 17 19 22 | 3eqtrd |  | 
						
							| 24 | 23 | eleq2d |  | 
						
							| 25 |  | el1o |  | 
						
							| 26 | 24 25 | bitrdi |  | 
						
							| 27 | 16 26 | anbi12d |  | 
						
							| 28 |  | elsni |  | 
						
							| 29 |  | mpteq1 |  | 
						
							| 30 |  | mpt0 |  | 
						
							| 31 | 29 30 | eqtrdi |  | 
						
							| 32 | 31 | eqeq2d |  | 
						
							| 33 | 32 | ad2antrr |  | 
						
							| 34 |  | simplrl |  | 
						
							| 35 |  | simpr |  | 
						
							| 36 | 34 35 | oveq12d |  | 
						
							| 37 | 5 | mavmul0 |  | 
						
							| 38 | 37 | ad2antrr |  | 
						
							| 39 |  | simpr |  | 
						
							| 40 | 39 | eqcomd |  | 
						
							| 41 | 40 | ad2antlr |  | 
						
							| 42 | 36 38 41 | 3eqtrd |  | 
						
							| 43 | 42 | ex |  | 
						
							| 44 | 33 43 | sylbid |  | 
						
							| 45 | 44 | a1d |  | 
						
							| 46 | 45 | ex |  | 
						
							| 47 | 28 46 | sylani |  | 
						
							| 48 | 27 47 | sylbid |  | 
						
							| 49 | 48 | 3imp |  |