Metamath Proof Explorer


Theorem crreczi

Description: Reciprocal of a complex number in terms of real and imaginary components. Remark in Apostol p. 361. (Contributed by NM, 29-Apr-2005) (Proof shortened by Jeff Hankins, 16-Dec-2013)

Ref Expression
Hypotheses crrecz.1 A
crrecz.2 B
Assertion crreczi A0B01A+iB=AiBA2+B2

Proof

Step Hyp Ref Expression
1 crrecz.1 A
2 crrecz.2 B
3 1 recni A
4 3 sqcli A2
5 ax-icn i
6 2 recni B
7 5 6 mulcli iB
8 7 sqcli iB2
9 4 8 negsubi A2+iB2=A2iB2
10 5 6 sqmuli iB2=i2B2
11 i2 i2=1
12 11 oveq1i i2B2=-1B2
13 ax-1cn 1
14 6 sqcli B2
15 13 14 mulneg1i -1B2=1B2
16 10 12 15 3eqtri iB2=1B2
17 16 negeqi iB2=1B2
18 13 14 mulcli 1B2
19 18 negnegi 1B2=1B2
20 14 mullidi 1B2=B2
21 17 19 20 3eqtri iB2=B2
22 21 oveq2i A2+iB2=A2+B2
23 3 7 subsqi A2iB2=A+iBAiB
24 9 22 23 3eqtr3ri A+iBAiB=A2+B2
25 24 oveq1i A+iBAiBA2+B2=A2+B2A2+B2
26 neorian A0B0¬A=0B=0
27 sumsqeq0 ABA=0B=0A2+B2=0
28 1 2 27 mp2an A=0B=0A2+B2=0
29 28 necon3bbii ¬A=0B=0A2+B20
30 26 29 bitri A0B0A2+B20
31 3 7 addcli A+iB
32 3 7 subcli AiB
33 4 14 addcli A2+B2
34 31 32 33 divasszi A2+B20A+iBAiBA2+B2=A+iBAiBA2+B2
35 30 34 sylbi A0B0A+iBAiBA2+B2=A+iBAiBA2+B2
36 divid A2+B2A2+B20A2+B2A2+B2=1
37 33 36 mpan A2+B20A2+B2A2+B2=1
38 30 37 sylbi A0B0A2+B2A2+B2=1
39 25 35 38 3eqtr3a A0B0A+iBAiBA2+B2=1
40 32 33 divclzi A2+B20AiBA2+B2
41 30 40 sylbi A0B0AiBA2+B2
42 31 a1i A0B0A+iB
43 crne0 ABA0B0A+iB0
44 1 2 43 mp2an A0B0A+iB0
45 44 biimpi A0B0A+iB0
46 divmul 1AiBA2+B2A+iBA+iB01A+iB=AiBA2+B2A+iBAiBA2+B2=1
47 13 46 mp3an1 AiBA2+B2A+iBA+iB01A+iB=AiBA2+B2A+iBAiBA2+B2=1
48 41 42 45 47 syl12anc A0B01A+iB=AiBA2+B2A+iBAiBA2+B2=1
49 39 48 mpbird A0B01A+iB=AiBA2+B2