Description: Reciprocal of a complex number in terms of real and imaginary components. Remark in Apostol p. 361. (Contributed by NM, 29-Apr-2005) (Proof shortened by Jeff Hankins, 16-Dec-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | crrecz.1 | |
|
crrecz.2 | |
||
Assertion | crreczi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crrecz.1 | |
|
2 | crrecz.2 | |
|
3 | 1 | recni | |
4 | 3 | sqcli | |
5 | ax-icn | |
|
6 | 2 | recni | |
7 | 5 6 | mulcli | |
8 | 7 | sqcli | |
9 | 4 8 | negsubi | |
10 | 5 6 | sqmuli | |
11 | i2 | |
|
12 | 11 | oveq1i | |
13 | ax-1cn | |
|
14 | 6 | sqcli | |
15 | 13 14 | mulneg1i | |
16 | 10 12 15 | 3eqtri | |
17 | 16 | negeqi | |
18 | 13 14 | mulcli | |
19 | 18 | negnegi | |
20 | 14 | mullidi | |
21 | 17 19 20 | 3eqtri | |
22 | 21 | oveq2i | |
23 | 3 7 | subsqi | |
24 | 9 22 23 | 3eqtr3ri | |
25 | 24 | oveq1i | |
26 | neorian | |
|
27 | sumsqeq0 | |
|
28 | 1 2 27 | mp2an | |
29 | 28 | necon3bbii | |
30 | 26 29 | bitri | |
31 | 3 7 | addcli | |
32 | 3 7 | subcli | |
33 | 4 14 | addcli | |
34 | 31 32 33 | divasszi | |
35 | 30 34 | sylbi | |
36 | divid | |
|
37 | 33 36 | mpan | |
38 | 30 37 | sylbi | |
39 | 25 35 38 | 3eqtr3a | |
40 | 32 33 | divclzi | |
41 | 30 40 | sylbi | |
42 | 31 | a1i | |
43 | crne0 | |
|
44 | 1 2 43 | mp2an | |
45 | 44 | biimpi | |
46 | divmul | |
|
47 | 13 46 | mp3an1 | |
48 | 41 42 45 47 | syl12anc | |
49 | 39 48 | mpbird | |