Metamath Proof Explorer


Theorem curf2

Description: Value of the curry functor at a morphism. (Contributed by Mario Carneiro, 13-Jan-2017)

Ref Expression
Hypotheses curf2.g G=CDcurryFF
curf2.a A=BaseC
curf2.c φCCat
curf2.d φDCat
curf2.f φFC×cDFuncE
curf2.b B=BaseD
curf2.h H=HomC
curf2.i I=IdD
curf2.x φXA
curf2.y φYA
curf2.k φKXHY
curf2.l L=X2ndGYK
Assertion curf2 φL=zBKXz2ndFYzIz

Proof

Step Hyp Ref Expression
1 curf2.g G=CDcurryFF
2 curf2.a A=BaseC
3 curf2.c φCCat
4 curf2.d φDCat
5 curf2.f φFC×cDFuncE
6 curf2.b B=BaseD
7 curf2.h H=HomC
8 curf2.i I=IdD
9 curf2.x φXA
10 curf2.y φYA
11 curf2.k φKXHY
12 curf2.l L=X2ndGYK
13 eqid HomD=HomD
14 eqid IdC=IdC
15 1 2 3 4 5 6 13 14 7 8 curfval φG=xAyBx1stFyyB,zBgyHomDzIdCxxy2ndFxzgxA,yAgxHyzBgxz2ndFyzIz
16 2 fvexi AV
17 16 mptex xAyBx1stFyyB,zBgyHomDzIdCxxy2ndFxzgV
18 16 16 mpoex xA,yAgxHyzBgxz2ndFyzIzV
19 17 18 op2ndd G=xAyBx1stFyyB,zBgyHomDzIdCxxy2ndFxzgxA,yAgxHyzBgxz2ndFyzIz2ndG=xA,yAgxHyzBgxz2ndFyzIz
20 15 19 syl φ2ndG=xA,yAgxHyzBgxz2ndFyzIz
21 10 adantr φx=XYA
22 ovex xHyV
23 22 mptex gxHyzBgxz2ndFyzIzV
24 23 a1i φx=Xy=YgxHyzBgxz2ndFyzIzV
25 11 adantr φx=Xy=YKXHY
26 simprl φx=Xy=Yx=X
27 simprr φx=Xy=Yy=Y
28 26 27 oveq12d φx=Xy=YxHy=XHY
29 25 28 eleqtrrd φx=Xy=YKxHy
30 6 fvexi BV
31 30 mptex zBgxz2ndFyzIzV
32 31 a1i φx=Xy=Yg=KzBgxz2ndFyzIzV
33 simplrl φx=Xy=Yg=Kx=X
34 33 opeq1d φx=Xy=Yg=Kxz=Xz
35 simplrr φx=Xy=Yg=Ky=Y
36 35 opeq1d φx=Xy=Yg=Kyz=Yz
37 34 36 oveq12d φx=Xy=Yg=Kxz2ndFyz=Xz2ndFYz
38 simpr φx=Xy=Yg=Kg=K
39 eqidd φx=Xy=Yg=KIz=Iz
40 37 38 39 oveq123d φx=Xy=Yg=Kgxz2ndFyzIz=KXz2ndFYzIz
41 40 mpteq2dv φx=Xy=Yg=KzBgxz2ndFyzIz=zBKXz2ndFYzIz
42 29 32 41 fvmptdv2 φx=Xy=YX2ndGY=gxHyzBgxz2ndFyzIzX2ndGYK=zBKXz2ndFYzIz
43 9 21 24 42 ovmpodv φ2ndG=xA,yAgxHyzBgxz2ndFyzIzX2ndGYK=zBKXz2ndFYzIz
44 20 43 mpd φX2ndGYK=zBKXz2ndFYzIz
45 12 44 eqtrid φL=zBKXz2ndFYzIz