Metamath Proof Explorer


Theorem cusgrfi

Description: If the size of a complete simple graph is finite, then its order is also finite. (Contributed by Alexander van der Vekens, 13-Jan-2018) (Revised by AV, 11-Nov-2020)

Ref Expression
Hypotheses cusgrfi.v V = Vtx G
cusgrfi.e E = Edg G
Assertion cusgrfi G ComplUSGraph E Fin V Fin

Proof

Step Hyp Ref Expression
1 cusgrfi.v V = Vtx G
2 cusgrfi.e E = Edg G
3 nfielex ¬ V Fin n n V
4 eqeq1 e = p e = v n p = v n
5 4 anbi2d e = p v n e = v n v n p = v n
6 5 rexbidv e = p v V v n e = v n v V v n p = v n
7 6 cbvrabv e 𝒫 V | v V v n e = v n = p 𝒫 V | v V v n p = v n
8 eqid p V n p n = p V n p n
9 1 7 8 cusgrfilem3 n V V Fin e 𝒫 V | v V v n e = v n Fin
10 9 notbid n V ¬ V Fin ¬ e 𝒫 V | v V v n e = v n Fin
11 10 biimpac ¬ V Fin n V ¬ e 𝒫 V | v V v n e = v n Fin
12 1 7 cusgrfilem1 G ComplUSGraph n V e 𝒫 V | v V v n e = v n Edg G
13 2 eleq1i E Fin Edg G Fin
14 ssfi Edg G Fin e 𝒫 V | v V v n e = v n Edg G e 𝒫 V | v V v n e = v n Fin
15 14 expcom e 𝒫 V | v V v n e = v n Edg G Edg G Fin e 𝒫 V | v V v n e = v n Fin
16 13 15 syl5bi e 𝒫 V | v V v n e = v n Edg G E Fin e 𝒫 V | v V v n e = v n Fin
17 16 con3d e 𝒫 V | v V v n e = v n Edg G ¬ e 𝒫 V | v V v n e = v n Fin ¬ E Fin
18 12 17 syl G ComplUSGraph n V ¬ e 𝒫 V | v V v n e = v n Fin ¬ E Fin
19 18 expcom n V G ComplUSGraph ¬ e 𝒫 V | v V v n e = v n Fin ¬ E Fin
20 19 com23 n V ¬ e 𝒫 V | v V v n e = v n Fin G ComplUSGraph ¬ E Fin
21 20 adantl ¬ V Fin n V ¬ e 𝒫 V | v V v n e = v n Fin G ComplUSGraph ¬ E Fin
22 11 21 mpd ¬ V Fin n V G ComplUSGraph ¬ E Fin
23 3 22 exlimddv ¬ V Fin G ComplUSGraph ¬ E Fin
24 23 com12 G ComplUSGraph ¬ V Fin ¬ E Fin
25 24 con4d G ComplUSGraph E Fin V Fin
26 25 imp G ComplUSGraph E Fin V Fin