Metamath Proof Explorer


Theorem cvmdi

Description: The covering property implies the modular pair property. Lemma 7.5.1 of MaedaMaeda p. 31. (Contributed by NM, 16-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypotheses mdsl.1 AC
mdsl.2 BC
Assertion cvmdi ABBA𝑀B

Proof

Step Hyp Ref Expression
1 mdsl.1 AC
2 mdsl.2 BC
3 anass ABxxABxBABxxABxB
4 2 1 chub2i BAB
5 sstr xBBABxAB
6 4 5 mpan2 xBxAB
7 6 pm4.71ri xBxABxB
8 7 anbi2i ABxxBABxxABxB
9 3 8 bitr4i ABxxABxBABxxB
10 1 2 chincli ABC
11 cvnbtwn4 ABCBCxCABBABxxBx=ABx=B
12 10 2 11 mp3an12 xCABBABxxBx=ABx=B
13 12 impcom ABBxCABxxBx=ABx=B
14 10 1 chjcomi ABA=AAB
15 1 2 chabs1i AAB=A
16 14 15 eqtri ABA=A
17 16 ineq1i ABAB=AB
18 10 chjidmi ABAB=AB
19 17 18 eqtr4i ABAB=ABAB
20 oveq1 x=ABxA=ABA
21 20 ineq1d x=ABxAB=ABAB
22 oveq1 x=ABxAB=ABAB
23 19 21 22 3eqtr4a x=ABxAB=xAB
24 incom BAB=BBA
25 2 1 chabs2i BBA=B
26 2 1 chabs1i BBA=B
27 incom BA=AB
28 27 oveq2i BBA=BAB
29 25 26 28 3eqtr2i BBA=BAB
30 24 29 eqtri BAB=BAB
31 oveq1 x=BxA=BA
32 31 ineq1d x=BxAB=BAB
33 oveq1 x=BxAB=BAB
34 30 32 33 3eqtr4a x=BxAB=xAB
35 23 34 jaoi x=ABx=BxAB=xAB
36 13 35 syl6 ABBxCABxxBxAB=xAB
37 9 36 biimtrid ABBxCABxxABxBxAB=xAB
38 37 exp4b ABBxCABxxABxBxAB=xAB
39 38 ralrimiv ABBxCABxxABxBxAB=xAB
40 1 2 mdsl1i xCABxxABxBxAB=xABA𝑀B
41 39 40 sylib ABBA𝑀B