Description: The covering property implies the modular pair property. Lemma 7.5.1 of MaedaMaeda p. 31. (Contributed by NM, 16-Jun-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mdsl.1 | |
|
mdsl.2 | |
||
Assertion | cvmdi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdsl.1 | |
|
2 | mdsl.2 | |
|
3 | anass | |
|
4 | 2 1 | chub2i | |
5 | sstr | |
|
6 | 4 5 | mpan2 | |
7 | 6 | pm4.71ri | |
8 | 7 | anbi2i | |
9 | 3 8 | bitr4i | |
10 | 1 2 | chincli | |
11 | cvnbtwn4 | |
|
12 | 10 2 11 | mp3an12 | |
13 | 12 | impcom | |
14 | 10 1 | chjcomi | |
15 | 1 2 | chabs1i | |
16 | 14 15 | eqtri | |
17 | 16 | ineq1i | |
18 | 10 | chjidmi | |
19 | 17 18 | eqtr4i | |
20 | oveq1 | |
|
21 | 20 | ineq1d | |
22 | oveq1 | |
|
23 | 19 21 22 | 3eqtr4a | |
24 | incom | |
|
25 | 2 1 | chabs2i | |
26 | 2 1 | chabs1i | |
27 | incom | |
|
28 | 27 | oveq2i | |
29 | 25 26 28 | 3eqtr2i | |
30 | 24 29 | eqtri | |
31 | oveq1 | |
|
32 | 31 | ineq1d | |
33 | oveq1 | |
|
34 | 30 32 33 | 3eqtr4a | |
35 | 23 34 | jaoi | |
36 | 13 35 | syl6 | |
37 | 9 36 | biimtrid | |
38 | 37 | exp4b | |
39 | 38 | ralrimiv | |
40 | 1 2 | mdsl1i | |
41 | 39 40 | sylib | |