Metamath Proof Explorer


Theorem cvmlift3lem1

Description: Lemma for cvmlift3 . (Contributed by Mario Carneiro, 6-Jul-2015)

Ref Expression
Hypotheses cvmlift3.b B = C
cvmlift3.y Y = K
cvmlift3.f φ F C CovMap J
cvmlift3.k φ K SConn
cvmlift3.l φ K N-Locally PConn
cvmlift3.o φ O Y
cvmlift3.g φ G K Cn J
cvmlift3.p φ P B
cvmlift3.e φ F P = G O
cvmlift3lem1.1 φ M II Cn K
cvmlift3lem1.2 φ M 0 = O
cvmlift3lem1.3 φ N II Cn K
cvmlift3lem1.4 φ N 0 = O
cvmlift3lem1.5 φ M 1 = N 1
Assertion cvmlift3lem1 φ ι g II Cn C | F g = G M g 0 = P 1 = ι g II Cn C | F g = G N g 0 = P 1

Proof

Step Hyp Ref Expression
1 cvmlift3.b B = C
2 cvmlift3.y Y = K
3 cvmlift3.f φ F C CovMap J
4 cvmlift3.k φ K SConn
5 cvmlift3.l φ K N-Locally PConn
6 cvmlift3.o φ O Y
7 cvmlift3.g φ G K Cn J
8 cvmlift3.p φ P B
9 cvmlift3.e φ F P = G O
10 cvmlift3lem1.1 φ M II Cn K
11 cvmlift3lem1.2 φ M 0 = O
12 cvmlift3lem1.3 φ N II Cn K
13 cvmlift3lem1.4 φ N 0 = O
14 cvmlift3lem1.5 φ M 1 = N 1
15 eqid ι g II Cn C | F g = G M g 0 = P = ι g II Cn C | F g = G M g 0 = P
16 eqid ι g II Cn C | F g = G N g 0 = P = ι g II Cn C | F g = G N g 0 = P
17 11 fveq2d φ G M 0 = G O
18 9 17 eqtr4d φ F P = G M 0
19 iiuni 0 1 = II
20 19 2 cnf M II Cn K M : 0 1 Y
21 10 20 syl φ M : 0 1 Y
22 0elunit 0 0 1
23 fvco3 M : 0 1 Y 0 0 1 G M 0 = G M 0
24 21 22 23 sylancl φ G M 0 = G M 0
25 18 24 eqtr4d φ F P = G M 0
26 11 13 eqtr4d φ M 0 = N 0
27 4 10 12 26 14 sconnpht2 φ M ph K N
28 27 7 phtpcco2 φ G M ph J G N
29 1 15 16 3 8 25 28 cvmliftpht φ ι g II Cn C | F g = G M g 0 = P ph C ι g II Cn C | F g = G N g 0 = P
30 phtpc01 ι g II Cn C | F g = G M g 0 = P ph C ι g II Cn C | F g = G N g 0 = P ι g II Cn C | F g = G M g 0 = P 0 = ι g II Cn C | F g = G N g 0 = P 0 ι g II Cn C | F g = G M g 0 = P 1 = ι g II Cn C | F g = G N g 0 = P 1
31 29 30 syl φ ι g II Cn C | F g = G M g 0 = P 0 = ι g II Cn C | F g = G N g 0 = P 0 ι g II Cn C | F g = G M g 0 = P 1 = ι g II Cn C | F g = G N g 0 = P 1
32 31 simprd φ ι g II Cn C | F g = G M g 0 = P 1 = ι g II Cn C | F g = G N g 0 = P 1