Metamath Proof Explorer


Theorem cvrat2

Description: A Hilbert lattice element covered by the join of two distinct atoms is an atom. ( atcvat2i analog.) (Contributed by NM, 30-Nov-2011)

Ref Expression
Hypotheses cvrat2.b B=BaseK
cvrat2.j ˙=joinK
cvrat2.c C=K
cvrat2.a A=AtomsK
Assertion cvrat2 KHLXBPAQAPQXCP˙QXA

Proof

Step Hyp Ref Expression
1 cvrat2.b B=BaseK
2 cvrat2.j ˙=joinK
3 cvrat2.c C=K
4 cvrat2.a A=AtomsK
5 eqid 0.K=0.K
6 1 2 5 3 4 atcvrj0 KHLXBPAQAXCP˙QX=0.KP=Q
7 6 3expa KHLXBPAQAXCP˙QX=0.KP=Q
8 7 necon3bid KHLXBPAQAXCP˙QX0.KPQ
9 simpl KHLXBPAQAKHL
10 simpr1 KHLXBPAQAXB
11 hllat KHLKLat
12 11 adantr KHLXBPAQAKLat
13 simpr2 KHLXBPAQAPA
14 1 4 atbase PAPB
15 13 14 syl KHLXBPAQAPB
16 simpr3 KHLXBPAQAQA
17 1 4 atbase QAQB
18 16 17 syl KHLXBPAQAQB
19 1 2 latjcl KLatPBQBP˙QB
20 12 15 18 19 syl3anc KHLXBPAQAP˙QB
21 eqid <K=<K
22 1 21 3 cvrlt KHLXBP˙QBXCP˙QX<KP˙Q
23 22 ex KHLXBP˙QBXCP˙QX<KP˙Q
24 9 10 20 23 syl3anc KHLXBPAQAXCP˙QX<KP˙Q
25 1 21 2 5 4 cvrat KHLXBPAQAX0.KX<KP˙QXA
26 25 expcomd KHLXBPAQAX<KP˙QX0.KXA
27 24 26 syld KHLXBPAQAXCP˙QX0.KXA
28 27 imp KHLXBPAQAXCP˙QX0.KXA
29 8 28 sylbird KHLXBPAQAXCP˙QPQXA
30 29 ex KHLXBPAQAXCP˙QPQXA
31 30 com23 KHLXBPAQAPQXCP˙QXA
32 31 impd KHLXBPAQAPQXCP˙QXA
33 32 3impia KHLXBPAQAPQXCP˙QXA