Metamath Proof Explorer


Theorem cvrat

Description: A nonzero Hilbert lattice element less than the join of two atoms is an atom. ( atcvati analog.) (Contributed by NM, 22-Nov-2011)

Ref Expression
Hypotheses cvrat.b B = Base K
cvrat.s < ˙ = < K
cvrat.j ˙ = join K
cvrat.z 0 ˙ = 0. K
cvrat.a A = Atoms K
Assertion cvrat K HL X B P A Q A X 0 ˙ X < ˙ P ˙ Q X A

Proof

Step Hyp Ref Expression
1 cvrat.b B = Base K
2 cvrat.s < ˙ = < K
3 cvrat.j ˙ = join K
4 cvrat.z 0 ˙ = 0. K
5 cvrat.a A = Atoms K
6 1 2 3 4 5 cvratlem K HL X B P A Q A X 0 ˙ X < ˙ P ˙ Q ¬ P K X X A
7 hllat K HL K Lat
8 7 adantr K HL X B P A Q A K Lat
9 simpr2 K HL X B P A Q A P A
10 1 5 atbase P A P B
11 9 10 syl K HL X B P A Q A P B
12 simpr3 K HL X B P A Q A Q A
13 1 5 atbase Q A Q B
14 12 13 syl K HL X B P A Q A Q B
15 1 3 latjcom K Lat P B Q B P ˙ Q = Q ˙ P
16 8 11 14 15 syl3anc K HL X B P A Q A P ˙ Q = Q ˙ P
17 16 breq2d K HL X B P A Q A X < ˙ P ˙ Q X < ˙ Q ˙ P
18 17 anbi2d K HL X B P A Q A X 0 ˙ X < ˙ P ˙ Q X 0 ˙ X < ˙ Q ˙ P
19 simpl K HL X B P A Q A K HL
20 simpr1 K HL X B P A Q A X B
21 1 2 3 4 5 cvratlem K HL X B Q A P A X 0 ˙ X < ˙ Q ˙ P ¬ Q K X X A
22 21 ex K HL X B Q A P A X 0 ˙ X < ˙ Q ˙ P ¬ Q K X X A
23 19 20 12 9 22 syl13anc K HL X B P A Q A X 0 ˙ X < ˙ Q ˙ P ¬ Q K X X A
24 18 23 sylbid K HL X B P A Q A X 0 ˙ X < ˙ P ˙ Q ¬ Q K X X A
25 24 imp K HL X B P A Q A X 0 ˙ X < ˙ P ˙ Q ¬ Q K X X A
26 hlpos K HL K Poset
27 26 adantr K HL X B P A Q A K Poset
28 1 3 latjcl K Lat P B Q B P ˙ Q B
29 8 11 14 28 syl3anc K HL X B P A Q A P ˙ Q B
30 eqid K = K
31 1 30 2 pltnle K Poset X B P ˙ Q B X < ˙ P ˙ Q ¬ P ˙ Q K X
32 31 ex K Poset X B P ˙ Q B X < ˙ P ˙ Q ¬ P ˙ Q K X
33 27 20 29 32 syl3anc K HL X B P A Q A X < ˙ P ˙ Q ¬ P ˙ Q K X
34 1 30 3 latjle12 K Lat P B Q B X B P K X Q K X P ˙ Q K X
35 8 11 14 20 34 syl13anc K HL X B P A Q A P K X Q K X P ˙ Q K X
36 35 biimpd K HL X B P A Q A P K X Q K X P ˙ Q K X
37 33 36 nsyld K HL X B P A Q A X < ˙ P ˙ Q ¬ P K X Q K X
38 ianor ¬ P K X Q K X ¬ P K X ¬ Q K X
39 37 38 syl6ib K HL X B P A Q A X < ˙ P ˙ Q ¬ P K X ¬ Q K X
40 39 imp K HL X B P A Q A X < ˙ P ˙ Q ¬ P K X ¬ Q K X
41 40 adantrl K HL X B P A Q A X 0 ˙ X < ˙ P ˙ Q ¬ P K X ¬ Q K X
42 6 25 41 mpjaod K HL X B P A Q A X 0 ˙ X < ˙ P ˙ Q X A
43 42 ex K HL X B P A Q A X 0 ˙ X < ˙ P ˙ Q X A