Metamath Proof Explorer


Theorem cvrat

Description: A nonzero Hilbert lattice element less than the join of two atoms is an atom. ( atcvati analog.) (Contributed by NM, 22-Nov-2011)

Ref Expression
Hypotheses cvrat.b 𝐵 = ( Base ‘ 𝐾 )
cvrat.s < = ( lt ‘ 𝐾 )
cvrat.j = ( join ‘ 𝐾 )
cvrat.z 0 = ( 0. ‘ 𝐾 )
cvrat.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion cvrat ( ( 𝐾 ∈ HL ∧ ( 𝑋𝐵𝑃𝐴𝑄𝐴 ) ) → ( ( 𝑋0𝑋 < ( 𝑃 𝑄 ) ) → 𝑋𝐴 ) )

Proof

Step Hyp Ref Expression
1 cvrat.b 𝐵 = ( Base ‘ 𝐾 )
2 cvrat.s < = ( lt ‘ 𝐾 )
3 cvrat.j = ( join ‘ 𝐾 )
4 cvrat.z 0 = ( 0. ‘ 𝐾 )
5 cvrat.a 𝐴 = ( Atoms ‘ 𝐾 )
6 1 2 3 4 5 cvratlem ( ( ( 𝐾 ∈ HL ∧ ( 𝑋𝐵𝑃𝐴𝑄𝐴 ) ) ∧ ( 𝑋0𝑋 < ( 𝑃 𝑄 ) ) ) → ( ¬ 𝑃 ( le ‘ 𝐾 ) 𝑋𝑋𝐴 ) )
7 hllat ( 𝐾 ∈ HL → 𝐾 ∈ Lat )
8 7 adantr ( ( 𝐾 ∈ HL ∧ ( 𝑋𝐵𝑃𝐴𝑄𝐴 ) ) → 𝐾 ∈ Lat )
9 simpr2 ( ( 𝐾 ∈ HL ∧ ( 𝑋𝐵𝑃𝐴𝑄𝐴 ) ) → 𝑃𝐴 )
10 1 5 atbase ( 𝑃𝐴𝑃𝐵 )
11 9 10 syl ( ( 𝐾 ∈ HL ∧ ( 𝑋𝐵𝑃𝐴𝑄𝐴 ) ) → 𝑃𝐵 )
12 simpr3 ( ( 𝐾 ∈ HL ∧ ( 𝑋𝐵𝑃𝐴𝑄𝐴 ) ) → 𝑄𝐴 )
13 1 5 atbase ( 𝑄𝐴𝑄𝐵 )
14 12 13 syl ( ( 𝐾 ∈ HL ∧ ( 𝑋𝐵𝑃𝐴𝑄𝐴 ) ) → 𝑄𝐵 )
15 1 3 latjcom ( ( 𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵 ) → ( 𝑃 𝑄 ) = ( 𝑄 𝑃 ) )
16 8 11 14 15 syl3anc ( ( 𝐾 ∈ HL ∧ ( 𝑋𝐵𝑃𝐴𝑄𝐴 ) ) → ( 𝑃 𝑄 ) = ( 𝑄 𝑃 ) )
17 16 breq2d ( ( 𝐾 ∈ HL ∧ ( 𝑋𝐵𝑃𝐴𝑄𝐴 ) ) → ( 𝑋 < ( 𝑃 𝑄 ) ↔ 𝑋 < ( 𝑄 𝑃 ) ) )
18 17 anbi2d ( ( 𝐾 ∈ HL ∧ ( 𝑋𝐵𝑃𝐴𝑄𝐴 ) ) → ( ( 𝑋0𝑋 < ( 𝑃 𝑄 ) ) ↔ ( 𝑋0𝑋 < ( 𝑄 𝑃 ) ) ) )
19 simpl ( ( 𝐾 ∈ HL ∧ ( 𝑋𝐵𝑃𝐴𝑄𝐴 ) ) → 𝐾 ∈ HL )
20 simpr1 ( ( 𝐾 ∈ HL ∧ ( 𝑋𝐵𝑃𝐴𝑄𝐴 ) ) → 𝑋𝐵 )
21 1 2 3 4 5 cvratlem ( ( ( 𝐾 ∈ HL ∧ ( 𝑋𝐵𝑄𝐴𝑃𝐴 ) ) ∧ ( 𝑋0𝑋 < ( 𝑄 𝑃 ) ) ) → ( ¬ 𝑄 ( le ‘ 𝐾 ) 𝑋𝑋𝐴 ) )
22 21 ex ( ( 𝐾 ∈ HL ∧ ( 𝑋𝐵𝑄𝐴𝑃𝐴 ) ) → ( ( 𝑋0𝑋 < ( 𝑄 𝑃 ) ) → ( ¬ 𝑄 ( le ‘ 𝐾 ) 𝑋𝑋𝐴 ) ) )
23 19 20 12 9 22 syl13anc ( ( 𝐾 ∈ HL ∧ ( 𝑋𝐵𝑃𝐴𝑄𝐴 ) ) → ( ( 𝑋0𝑋 < ( 𝑄 𝑃 ) ) → ( ¬ 𝑄 ( le ‘ 𝐾 ) 𝑋𝑋𝐴 ) ) )
24 18 23 sylbid ( ( 𝐾 ∈ HL ∧ ( 𝑋𝐵𝑃𝐴𝑄𝐴 ) ) → ( ( 𝑋0𝑋 < ( 𝑃 𝑄 ) ) → ( ¬ 𝑄 ( le ‘ 𝐾 ) 𝑋𝑋𝐴 ) ) )
25 24 imp ( ( ( 𝐾 ∈ HL ∧ ( 𝑋𝐵𝑃𝐴𝑄𝐴 ) ) ∧ ( 𝑋0𝑋 < ( 𝑃 𝑄 ) ) ) → ( ¬ 𝑄 ( le ‘ 𝐾 ) 𝑋𝑋𝐴 ) )
26 hlpos ( 𝐾 ∈ HL → 𝐾 ∈ Poset )
27 26 adantr ( ( 𝐾 ∈ HL ∧ ( 𝑋𝐵𝑃𝐴𝑄𝐴 ) ) → 𝐾 ∈ Poset )
28 1 3 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵 ) → ( 𝑃 𝑄 ) ∈ 𝐵 )
29 8 11 14 28 syl3anc ( ( 𝐾 ∈ HL ∧ ( 𝑋𝐵𝑃𝐴𝑄𝐴 ) ) → ( 𝑃 𝑄 ) ∈ 𝐵 )
30 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
31 1 30 2 pltnle ( ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵 ∧ ( 𝑃 𝑄 ) ∈ 𝐵 ) ∧ 𝑋 < ( 𝑃 𝑄 ) ) → ¬ ( 𝑃 𝑄 ) ( le ‘ 𝐾 ) 𝑋 )
32 31 ex ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵 ∧ ( 𝑃 𝑄 ) ∈ 𝐵 ) → ( 𝑋 < ( 𝑃 𝑄 ) → ¬ ( 𝑃 𝑄 ) ( le ‘ 𝐾 ) 𝑋 ) )
33 27 20 29 32 syl3anc ( ( 𝐾 ∈ HL ∧ ( 𝑋𝐵𝑃𝐴𝑄𝐴 ) ) → ( 𝑋 < ( 𝑃 𝑄 ) → ¬ ( 𝑃 𝑄 ) ( le ‘ 𝐾 ) 𝑋 ) )
34 1 30 3 latjle12 ( ( 𝐾 ∈ Lat ∧ ( 𝑃𝐵𝑄𝐵𝑋𝐵 ) ) → ( ( 𝑃 ( le ‘ 𝐾 ) 𝑋𝑄 ( le ‘ 𝐾 ) 𝑋 ) ↔ ( 𝑃 𝑄 ) ( le ‘ 𝐾 ) 𝑋 ) )
35 8 11 14 20 34 syl13anc ( ( 𝐾 ∈ HL ∧ ( 𝑋𝐵𝑃𝐴𝑄𝐴 ) ) → ( ( 𝑃 ( le ‘ 𝐾 ) 𝑋𝑄 ( le ‘ 𝐾 ) 𝑋 ) ↔ ( 𝑃 𝑄 ) ( le ‘ 𝐾 ) 𝑋 ) )
36 35 biimpd ( ( 𝐾 ∈ HL ∧ ( 𝑋𝐵𝑃𝐴𝑄𝐴 ) ) → ( ( 𝑃 ( le ‘ 𝐾 ) 𝑋𝑄 ( le ‘ 𝐾 ) 𝑋 ) → ( 𝑃 𝑄 ) ( le ‘ 𝐾 ) 𝑋 ) )
37 33 36 nsyld ( ( 𝐾 ∈ HL ∧ ( 𝑋𝐵𝑃𝐴𝑄𝐴 ) ) → ( 𝑋 < ( 𝑃 𝑄 ) → ¬ ( 𝑃 ( le ‘ 𝐾 ) 𝑋𝑄 ( le ‘ 𝐾 ) 𝑋 ) ) )
38 ianor ( ¬ ( 𝑃 ( le ‘ 𝐾 ) 𝑋𝑄 ( le ‘ 𝐾 ) 𝑋 ) ↔ ( ¬ 𝑃 ( le ‘ 𝐾 ) 𝑋 ∨ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑋 ) )
39 37 38 syl6ib ( ( 𝐾 ∈ HL ∧ ( 𝑋𝐵𝑃𝐴𝑄𝐴 ) ) → ( 𝑋 < ( 𝑃 𝑄 ) → ( ¬ 𝑃 ( le ‘ 𝐾 ) 𝑋 ∨ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑋 ) ) )
40 39 imp ( ( ( 𝐾 ∈ HL ∧ ( 𝑋𝐵𝑃𝐴𝑄𝐴 ) ) ∧ 𝑋 < ( 𝑃 𝑄 ) ) → ( ¬ 𝑃 ( le ‘ 𝐾 ) 𝑋 ∨ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑋 ) )
41 40 adantrl ( ( ( 𝐾 ∈ HL ∧ ( 𝑋𝐵𝑃𝐴𝑄𝐴 ) ) ∧ ( 𝑋0𝑋 < ( 𝑃 𝑄 ) ) ) → ( ¬ 𝑃 ( le ‘ 𝐾 ) 𝑋 ∨ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑋 ) )
42 6 25 41 mpjaod ( ( ( 𝐾 ∈ HL ∧ ( 𝑋𝐵𝑃𝐴𝑄𝐴 ) ) ∧ ( 𝑋0𝑋 < ( 𝑃 𝑄 ) ) ) → 𝑋𝐴 )
43 42 ex ( ( 𝐾 ∈ HL ∧ ( 𝑋𝐵𝑃𝐴𝑄𝐴 ) ) → ( ( 𝑋0𝑋 < ( 𝑃 𝑄 ) ) → 𝑋𝐴 ) )