Metamath Proof Explorer


Theorem dalawlem15

Description: Lemma for dalaw . Swap variable triples P Q R and S T U in dalawlem14 , to obtain the elimination of the remaining conditions in dalawlem1 . (Contributed by NM, 6-Oct-2012)

Ref Expression
Hypotheses dalawlem.l ˙=K
dalawlem.j ˙=joinK
dalawlem.m ˙=meetK
dalawlem.a A=AtomsK
dalawlem2.o O=LPlanesK
Assertion dalawlem15 KHL¬S˙T˙UO¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙SP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙R˙T˙U˙R˙P˙U˙S

Proof

Step Hyp Ref Expression
1 dalawlem.l ˙=K
2 dalawlem.j ˙=joinK
3 dalawlem.m ˙=meetK
4 dalawlem.a A=AtomsK
5 dalawlem2.o O=LPlanesK
6 simp11 KHL¬S˙T˙UO¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙SP˙S˙Q˙T˙R˙UPAQARASATAUAKHL
7 simp12 KHL¬S˙T˙UO¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙SP˙S˙Q˙T˙R˙UPAQARASATAUA¬S˙T˙UO¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙S
8 simp21 KHL¬S˙T˙UO¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙SP˙S˙Q˙T˙R˙UPAQARASATAUAPA
9 simp31 KHL¬S˙T˙UO¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙SP˙S˙Q˙T˙R˙UPAQARASATAUASA
10 2 4 hlatjcom KHLPASAP˙S=S˙P
11 6 8 9 10 syl3anc KHL¬S˙T˙UO¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙SP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S=S˙P
12 simp22 KHL¬S˙T˙UO¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙SP˙S˙Q˙T˙R˙UPAQARASATAUAQA
13 simp32 KHL¬S˙T˙UO¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙SP˙S˙Q˙T˙R˙UPAQARASATAUATA
14 2 4 hlatjcom KHLQATAQ˙T=T˙Q
15 6 12 13 14 syl3anc KHL¬S˙T˙UO¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙SP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T=T˙Q
16 11 15 oveq12d KHL¬S˙T˙UO¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙SP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙Q˙T=S˙P˙T˙Q
17 16 breq1d KHL¬S˙T˙UO¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙SP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙Q˙T˙S˙TS˙P˙T˙Q˙S˙T
18 17 notbid KHL¬S˙T˙UO¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙SP˙S˙Q˙T˙R˙UPAQARASATAUA¬P˙S˙Q˙T˙S˙T¬S˙P˙T˙Q˙S˙T
19 16 breq1d KHL¬S˙T˙UO¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙SP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙Q˙T˙T˙US˙P˙T˙Q˙T˙U
20 19 notbid KHL¬S˙T˙UO¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙SP˙S˙Q˙T˙R˙UPAQARASATAUA¬P˙S˙Q˙T˙T˙U¬S˙P˙T˙Q˙T˙U
21 16 breq1d KHL¬S˙T˙UO¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙SP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙Q˙T˙U˙SS˙P˙T˙Q˙U˙S
22 21 notbid KHL¬S˙T˙UO¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙SP˙S˙Q˙T˙R˙UPAQARASATAUA¬P˙S˙Q˙T˙U˙S¬S˙P˙T˙Q˙U˙S
23 18 20 22 3anbi123d KHL¬S˙T˙UO¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙SP˙S˙Q˙T˙R˙UPAQARASATAUA¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙S¬S˙P˙T˙Q˙S˙T¬S˙P˙T˙Q˙T˙U¬S˙P˙T˙Q˙U˙S
24 23 anbi2d KHL¬S˙T˙UO¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙SP˙S˙Q˙T˙R˙UPAQARASATAUAS˙T˙UO¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙SS˙T˙UO¬S˙P˙T˙Q˙S˙T¬S˙P˙T˙Q˙T˙U¬S˙P˙T˙Q˙U˙S
25 7 24 mtbid KHL¬S˙T˙UO¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙SP˙S˙Q˙T˙R˙UPAQARASATAUA¬S˙T˙UO¬S˙P˙T˙Q˙S˙T¬S˙P˙T˙Q˙T˙U¬S˙P˙T˙Q˙U˙S
26 simp13 KHL¬S˙T˙UO¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙SP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙Q˙T˙R˙U
27 2 4 hlatjcom KHLSAPAS˙P=P˙S
28 6 9 8 27 syl3anc KHL¬S˙T˙UO¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙SP˙S˙Q˙T˙R˙UPAQARASATAUAS˙P=P˙S
29 2 4 hlatjcom KHLTAQAT˙Q=Q˙T
30 6 13 12 29 syl3anc KHL¬S˙T˙UO¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙SP˙S˙Q˙T˙R˙UPAQARASATAUAT˙Q=Q˙T
31 28 30 oveq12d KHL¬S˙T˙UO¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙SP˙S˙Q˙T˙R˙UPAQARASATAUAS˙P˙T˙Q=P˙S˙Q˙T
32 simp33 KHL¬S˙T˙UO¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙SP˙S˙Q˙T˙R˙UPAQARASATAUAUA
33 simp23 KHL¬S˙T˙UO¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙SP˙S˙Q˙T˙R˙UPAQARASATAUARA
34 2 4 hlatjcom KHLUARAU˙R=R˙U
35 6 32 33 34 syl3anc KHL¬S˙T˙UO¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙SP˙S˙Q˙T˙R˙UPAQARASATAUAU˙R=R˙U
36 26 31 35 3brtr4d KHL¬S˙T˙UO¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙SP˙S˙Q˙T˙R˙UPAQARASATAUAS˙P˙T˙Q˙U˙R
37 simp3 KHL¬S˙T˙UO¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙SP˙S˙Q˙T˙R˙UPAQARASATAUASATAUA
38 simp2 KHL¬S˙T˙UO¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙SP˙S˙Q˙T˙R˙UPAQARASATAUAPAQARA
39 1 2 3 4 5 dalawlem14 KHL¬S˙T˙UO¬S˙P˙T˙Q˙S˙T¬S˙P˙T˙Q˙T˙U¬S˙P˙T˙Q˙U˙SS˙P˙T˙Q˙U˙RSATAUAPAQARAS˙T˙P˙Q˙T˙U˙Q˙R˙U˙S˙R˙P
40 6 25 36 37 38 39 syl311anc KHL¬S˙T˙UO¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙SP˙S˙Q˙T˙R˙UPAQARASATAUAS˙T˙P˙Q˙T˙U˙Q˙R˙U˙S˙R˙P
41 6 hllatd KHL¬S˙T˙UO¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙SP˙S˙Q˙T˙R˙UPAQARASATAUAKLat
42 eqid BaseK=BaseK
43 42 2 4 hlatjcl KHLPAQAP˙QBaseK
44 6 8 12 43 syl3anc KHL¬S˙T˙UO¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙SP˙S˙Q˙T˙R˙UPAQARASATAUAP˙QBaseK
45 42 2 4 hlatjcl KHLSATAS˙TBaseK
46 6 9 13 45 syl3anc KHL¬S˙T˙UO¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙SP˙S˙Q˙T˙R˙UPAQARASATAUAS˙TBaseK
47 42 3 latmcom KLatP˙QBaseKS˙TBaseKP˙Q˙S˙T=S˙T˙P˙Q
48 41 44 46 47 syl3anc KHL¬S˙T˙UO¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙SP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T=S˙T˙P˙Q
49 42 2 4 hlatjcl KHLQARAQ˙RBaseK
50 6 12 33 49 syl3anc KHL¬S˙T˙UO¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙SP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙RBaseK
51 42 2 4 hlatjcl KHLTAUAT˙UBaseK
52 6 13 32 51 syl3anc KHL¬S˙T˙UO¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙SP˙S˙Q˙T˙R˙UPAQARASATAUAT˙UBaseK
53 42 3 latmcom KLatQ˙RBaseKT˙UBaseKQ˙R˙T˙U=T˙U˙Q˙R
54 41 50 52 53 syl3anc KHL¬S˙T˙UO¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙SP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙R˙T˙U=T˙U˙Q˙R
55 42 2 4 hlatjcl KHLRAPAR˙PBaseK
56 6 33 8 55 syl3anc KHL¬S˙T˙UO¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙SP˙S˙Q˙T˙R˙UPAQARASATAUAR˙PBaseK
57 42 2 4 hlatjcl KHLUASAU˙SBaseK
58 6 32 9 57 syl3anc KHL¬S˙T˙UO¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙SP˙S˙Q˙T˙R˙UPAQARASATAUAU˙SBaseK
59 42 3 latmcom KLatR˙PBaseKU˙SBaseKR˙P˙U˙S=U˙S˙R˙P
60 41 56 58 59 syl3anc KHL¬S˙T˙UO¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙SP˙S˙Q˙T˙R˙UPAQARASATAUAR˙P˙U˙S=U˙S˙R˙P
61 54 60 oveq12d KHL¬S˙T˙UO¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙SP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙R˙T˙U˙R˙P˙U˙S=T˙U˙Q˙R˙U˙S˙R˙P
62 40 48 61 3brtr4d KHL¬S˙T˙UO¬P˙S˙Q˙T˙S˙T¬P˙S˙Q˙T˙T˙U¬P˙S˙Q˙T˙U˙SP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙R˙T˙U˙R˙P˙U˙S