| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dalawlem.l |
|
| 2 |
|
dalawlem.j |
|
| 3 |
|
dalawlem.m |
|
| 4 |
|
dalawlem.a |
|
| 5 |
|
dalawlem2.o |
|
| 6 |
|
simp11 |
|
| 7 |
|
simp12 |
|
| 8 |
|
simp21 |
|
| 9 |
|
simp31 |
|
| 10 |
2 4
|
hlatjcom |
|
| 11 |
6 8 9 10
|
syl3anc |
|
| 12 |
|
simp22 |
|
| 13 |
|
simp32 |
|
| 14 |
2 4
|
hlatjcom |
|
| 15 |
6 12 13 14
|
syl3anc |
|
| 16 |
11 15
|
oveq12d |
|
| 17 |
16
|
breq1d |
|
| 18 |
17
|
notbid |
|
| 19 |
16
|
breq1d |
|
| 20 |
19
|
notbid |
|
| 21 |
16
|
breq1d |
|
| 22 |
21
|
notbid |
|
| 23 |
18 20 22
|
3anbi123d |
|
| 24 |
23
|
anbi2d |
|
| 25 |
7 24
|
mtbid |
|
| 26 |
|
simp13 |
|
| 27 |
2 4
|
hlatjcom |
|
| 28 |
6 9 8 27
|
syl3anc |
|
| 29 |
2 4
|
hlatjcom |
|
| 30 |
6 13 12 29
|
syl3anc |
|
| 31 |
28 30
|
oveq12d |
|
| 32 |
|
simp33 |
|
| 33 |
|
simp23 |
|
| 34 |
2 4
|
hlatjcom |
|
| 35 |
6 32 33 34
|
syl3anc |
|
| 36 |
26 31 35
|
3brtr4d |
|
| 37 |
|
simp3 |
|
| 38 |
|
simp2 |
|
| 39 |
1 2 3 4 5
|
dalawlem14 |
|
| 40 |
6 25 36 37 38 39
|
syl311anc |
|
| 41 |
6
|
hllatd |
|
| 42 |
|
eqid |
|
| 43 |
42 2 4
|
hlatjcl |
|
| 44 |
6 8 12 43
|
syl3anc |
|
| 45 |
42 2 4
|
hlatjcl |
|
| 46 |
6 9 13 45
|
syl3anc |
|
| 47 |
42 3
|
latmcom |
|
| 48 |
41 44 46 47
|
syl3anc |
|
| 49 |
42 2 4
|
hlatjcl |
|
| 50 |
6 12 33 49
|
syl3anc |
|
| 51 |
42 2 4
|
hlatjcl |
|
| 52 |
6 13 32 51
|
syl3anc |
|
| 53 |
42 3
|
latmcom |
|
| 54 |
41 50 52 53
|
syl3anc |
|
| 55 |
42 2 4
|
hlatjcl |
|
| 56 |
6 33 8 55
|
syl3anc |
|
| 57 |
42 2 4
|
hlatjcl |
|
| 58 |
6 32 9 57
|
syl3anc |
|
| 59 |
42 3
|
latmcom |
|
| 60 |
41 56 58 59
|
syl3anc |
|
| 61 |
54 60
|
oveq12d |
|
| 62 |
40 48 61
|
3brtr4d |
|