Metamath Proof Explorer


Theorem dalem60

Description: Lemma for dath . B is an axis of perspectivity (almost). (Contributed by NM, 11-Aug-2012)

Ref Expression
Hypotheses dalem.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalem.l ˙=K
dalem.j ˙=joinK
dalem.a A=AtomsK
dalem.ps ψcAdA¬c˙Ydc¬d˙YC˙c˙d
dalem60.m ˙=meetK
dalem60.o O=LPlanesK
dalem60.y Y=P˙Q˙R
dalem60.z Z=S˙T˙U
dalem60.d D=P˙Q˙S˙T
dalem60.e E=Q˙R˙T˙U
dalem60.g G=c˙P˙d˙S
dalem60.h H=c˙Q˙d˙T
dalem60.i I=c˙R˙d˙U
dalem60.b1 B=G˙H˙I˙Y
Assertion dalem60 φY=ZψD˙E=B

Proof

Step Hyp Ref Expression
1 dalem.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalem.l ˙=K
3 dalem.j ˙=joinK
4 dalem.a A=AtomsK
5 dalem.ps ψcAdA¬c˙Ydc¬d˙YC˙c˙d
6 dalem60.m ˙=meetK
7 dalem60.o O=LPlanesK
8 dalem60.y Y=P˙Q˙R
9 dalem60.z Z=S˙T˙U
10 dalem60.d D=P˙Q˙S˙T
11 dalem60.e E=Q˙R˙T˙U
12 dalem60.g G=c˙P˙d˙S
13 dalem60.h H=c˙Q˙d˙T
14 dalem60.i I=c˙R˙d˙U
15 dalem60.b1 B=G˙H˙I˙Y
16 1 2 3 4 5 6 7 8 9 10 12 13 14 15 dalem57 φY=ZψD˙B
17 1 2 3 4 5 6 7 8 9 11 12 13 14 15 dalem58 φY=ZψE˙B
18 1 dalemkelat φKLat
19 18 3ad2ant1 φY=ZψKLat
20 1 2 3 4 6 7 8 9 10 dalemdea φDA
21 eqid BaseK=BaseK
22 21 4 atbase DADBaseK
23 20 22 syl φDBaseK
24 23 3ad2ant1 φY=ZψDBaseK
25 1 2 3 4 6 7 8 9 11 dalemeea φEA
26 21 4 atbase EAEBaseK
27 25 26 syl φEBaseK
28 27 3ad2ant1 φY=ZψEBaseK
29 eqid LLinesK=LLinesK
30 1 2 3 4 5 6 29 7 8 9 12 13 14 15 dalem53 φY=ZψBLLinesK
31 21 29 llnbase BLLinesKBBaseK
32 30 31 syl φY=ZψBBaseK
33 21 2 3 latjle12 KLatDBaseKEBaseKBBaseKD˙BE˙BD˙E˙B
34 19 24 28 32 33 syl13anc φY=ZψD˙BE˙BD˙E˙B
35 16 17 34 mpbi2and φY=ZψD˙E˙B
36 1 dalemkehl φKHL
37 36 3ad2ant1 φY=ZψKHL
38 1 2 3 4 6 7 8 9 10 11 dalemdnee φDE
39 3 4 29 llni2 KHLDAEADED˙ELLinesK
40 36 20 25 38 39 syl31anc φD˙ELLinesK
41 40 3ad2ant1 φY=ZψD˙ELLinesK
42 2 29 llncmp KHLD˙ELLinesKBLLinesKD˙E˙BD˙E=B
43 37 41 30 42 syl3anc φY=ZψD˙E˙BD˙E=B
44 35 43 mpbid φY=ZψD˙E=B