Description: An asymptotic approximation for the sum of X ( n ) Lam ( n ) / n conditional on the value of the infinite sum S . (We will later show that the case S = 0 is impossible, and hence establish dchrvmasum .) (Contributed by Mario Carneiro, 5-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rpvmasum.z | |
|
rpvmasum.l | |
||
rpvmasum.a | |
||
rpvmasum.g | |
||
rpvmasum.d | |
||
rpvmasum.1 | |
||
dchrisum.b | |
||
dchrisum.n1 | |
||
dchrvmasumif.f | |
||
dchrvmasumif.c | |
||
dchrvmasumif.s | |
||
dchrvmasumif.1 | |
||
Assertion | dchrvmasumif | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpvmasum.z | |
|
2 | rpvmasum.l | |
|
3 | rpvmasum.a | |
|
4 | rpvmasum.g | |
|
5 | rpvmasum.d | |
|
6 | rpvmasum.1 | |
|
7 | dchrisum.b | |
|
8 | dchrisum.n1 | |
|
9 | dchrvmasumif.f | |
|
10 | dchrvmasumif.c | |
|
11 | dchrvmasumif.s | |
|
12 | dchrvmasumif.1 | |
|
13 | eqid | |
|
14 | 1 2 3 4 5 6 7 8 13 | dchrvmasumlema | |
15 | 3 | adantr | |
16 | 7 | adantr | |
17 | 8 | adantr | |
18 | 10 | adantr | |
19 | 11 | adantr | |
20 | 12 | adantr | |
21 | simprl | |
|
22 | simprrl | |
|
23 | simprrr | |
|
24 | 1 2 15 4 5 6 16 17 9 18 19 20 13 21 22 23 | dchrvmasumiflem2 | |
25 | 24 | rexlimdvaa | |
26 | 25 | exlimdv | |
27 | 14 26 | mpd | |