Metamath Proof Explorer


Theorem dchrvmasumif

Description: An asymptotic approximation for the sum of X ( n ) Lam ( n ) / n conditional on the value of the infinite sum S . (We will later show that the case S = 0 is impossible, and hence establish dchrvmasum .) (Contributed by Mario Carneiro, 5-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z=/N
rpvmasum.l L=ℤRHomZ
rpvmasum.a φN
rpvmasum.g G=DChrN
rpvmasum.d D=BaseG
rpvmasum.1 1˙=0G
dchrisum.b φXD
dchrisum.n1 φX1˙
dchrvmasumif.f F=aXLaa
dchrvmasumif.c φC0+∞
dchrvmasumif.s φseq1+FS
dchrvmasumif.1 φy1+∞seq1+FySCy
Assertion dchrvmasumif φx+n=1xXLnΛnn+ifS=0logx0𝑂1

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z=/N
2 rpvmasum.l L=ℤRHomZ
3 rpvmasum.a φN
4 rpvmasum.g G=DChrN
5 rpvmasum.d D=BaseG
6 rpvmasum.1 1˙=0G
7 dchrisum.b φXD
8 dchrisum.n1 φX1˙
9 dchrvmasumif.f F=aXLaa
10 dchrvmasumif.c φC0+∞
11 dchrvmasumif.s φseq1+FS
12 dchrvmasumif.1 φy1+∞seq1+FySCy
13 eqid aXLalogaa=aXLalogaa
14 1 2 3 4 5 6 7 8 13 dchrvmasumlema φtc0+∞seq1+aXLalogaaty3+∞seq1+aXLalogaaytclogyy
15 3 adantr φc0+∞seq1+aXLalogaaty3+∞seq1+aXLalogaaytclogyyN
16 7 adantr φc0+∞seq1+aXLalogaaty3+∞seq1+aXLalogaaytclogyyXD
17 8 adantr φc0+∞seq1+aXLalogaaty3+∞seq1+aXLalogaaytclogyyX1˙
18 10 adantr φc0+∞seq1+aXLalogaaty3+∞seq1+aXLalogaaytclogyyC0+∞
19 11 adantr φc0+∞seq1+aXLalogaaty3+∞seq1+aXLalogaaytclogyyseq1+FS
20 12 adantr φc0+∞seq1+aXLalogaaty3+∞seq1+aXLalogaaytclogyyy1+∞seq1+FySCy
21 simprl φc0+∞seq1+aXLalogaaty3+∞seq1+aXLalogaaytclogyyc0+∞
22 simprrl φc0+∞seq1+aXLalogaaty3+∞seq1+aXLalogaaytclogyyseq1+aXLalogaat
23 simprrr φc0+∞seq1+aXLalogaaty3+∞seq1+aXLalogaaytclogyyy3+∞seq1+aXLalogaaytclogyy
24 1 2 15 4 5 6 16 17 9 18 19 20 13 21 22 23 dchrvmasumiflem2 φc0+∞seq1+aXLalogaaty3+∞seq1+aXLalogaaytclogyyx+n=1xXLnΛnn+ifS=0logx0𝑂1
25 24 rexlimdvaa φc0+∞seq1+aXLalogaaty3+∞seq1+aXLalogaaytclogyyx+n=1xXLnΛnn+ifS=0logx0𝑂1
26 25 exlimdv φtc0+∞seq1+aXLalogaaty3+∞seq1+aXLalogaaytclogyyx+n=1xXLnΛnn+ifS=0logx0𝑂1
27 14 26 mpd φx+n=1xXLnΛnn+ifS=0logx0𝑂1