Metamath Proof Explorer


Theorem deg1sub

Description: Exact degree of a difference of two polynomials of unequal degree. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses deg1addle.y Y=Poly1R
deg1addle.d D=deg1R
deg1addle.r φRRing
deg1suble.b B=BaseY
deg1suble.m -˙=-Y
deg1suble.f φFB
deg1suble.g φGB
deg1sub.l φDG<DF
Assertion deg1sub φDF-˙G=DF

Proof

Step Hyp Ref Expression
1 deg1addle.y Y=Poly1R
2 deg1addle.d D=deg1R
3 deg1addle.r φRRing
4 deg1suble.b B=BaseY
5 deg1suble.m -˙=-Y
6 deg1suble.f φFB
7 deg1suble.g φGB
8 deg1sub.l φDG<DF
9 eqid +Y=+Y
10 eqid invgY=invgY
11 4 9 10 5 grpsubval FBGBF-˙G=F+YinvgYG
12 6 7 11 syl2anc φF-˙G=F+YinvgYG
13 12 fveq2d φDF-˙G=DF+YinvgYG
14 1 ply1ring RRingYRing
15 ringgrp YRingYGrp
16 3 14 15 3syl φYGrp
17 4 10 grpinvcl YGrpGBinvgYGB
18 16 7 17 syl2anc φinvgYGB
19 1 2 3 4 10 7 deg1invg φDinvgYG=DG
20 19 8 eqbrtrd φDinvgYG<DF
21 1 2 3 4 9 6 18 20 deg1add φDF+YinvgYG=DF
22 13 21 eqtrd φDF-˙G=DF