Metamath Proof Explorer


Theorem dfafv2

Description: Alternative definition of ( F ''' A ) using ( FA ) directly. (Contributed by Alexander van der Vekens, 22-Jul-2017) (Revised by AV, 25-Aug-2022)

Ref Expression
Assertion dfafv2 F'''A=ifFdefAtAFAV

Proof

Step Hyp Ref Expression
1 df-fv FA=ιx|AFx
2 simprr AdomF∃!xAFx∃!xAFx
3 reuaiotaiota ∃!xAFxιx|AFx=ι
4 2 3 sylib AdomF∃!xAFxιx|AFx=ι
5 1 4 eqtrid AdomF∃!xAFxFA=ι
6 eubrdm ∃!xAFxAdomF
7 6 ancri ∃!xAFxAdomF∃!xAFx
8 7 con3i ¬AdomF∃!xAFx¬∃!xAFx
9 8 adantl ¬AdomF∃!xAFx¬∃!xAFx
10 aiotavb ¬∃!xAFxι=V
11 9 10 sylib ¬AdomF∃!xAFxι=V
12 11 eqcomd ¬AdomF∃!xAFxV=ι
13 5 12 ifeqda ifAdomF∃!xAFxFAV=ι
14 13 mptru ifAdomF∃!xAFxFAV=ι
15 dfdfat2 FdefAtAAdomF∃!xAFx
16 ifbi FdefAtAAdomF∃!xAFxifFdefAtAFAV=ifAdomF∃!xAFxFAV
17 15 16 ax-mp ifFdefAtAFAV=ifAdomF∃!xAFxFAV
18 df-afv F'''A=ι
19 14 17 18 3eqtr4ri F'''A=ifFdefAtAFAV