Metamath Proof Explorer


Theorem dfafv2

Description: Alternative definition of ( F ''' A ) using ( FA ) directly. (Contributed by Alexander van der Vekens, 22-Jul-2017) (Revised by AV, 25-Aug-2022)

Ref Expression
Assertion dfafv2 F ''' A = if F defAt A F A V

Proof

Step Hyp Ref Expression
1 df-fv F A = ι x | A F x
2 simprr A dom F ∃! x A F x ∃! x A F x
3 reuaiotaiota ∃! x A F x ι x | A F x = ι
4 2 3 sylib A dom F ∃! x A F x ι x | A F x = ι
5 1 4 syl5eq A dom F ∃! x A F x F A = ι
6 eubrdm ∃! x A F x A dom F
7 6 ancri ∃! x A F x A dom F ∃! x A F x
8 7 con3i ¬ A dom F ∃! x A F x ¬ ∃! x A F x
9 8 adantl ¬ A dom F ∃! x A F x ¬ ∃! x A F x
10 aiotavb ¬ ∃! x A F x ι = V
11 9 10 sylib ¬ A dom F ∃! x A F x ι = V
12 11 eqcomd ¬ A dom F ∃! x A F x V = ι
13 5 12 ifeqda if A dom F ∃! x A F x F A V = ι
14 13 mptru if A dom F ∃! x A F x F A V = ι
15 dfdfat2 F defAt A A dom F ∃! x A F x
16 ifbi F defAt A A dom F ∃! x A F x if F defAt A F A V = if A dom F ∃! x A F x F A V
17 15 16 ax-mp if F defAt A F A V = if A dom F ∃! x A F x F A V
18 df-afv F ''' A = ι
19 14 17 18 3eqtr4ri F ''' A = if F defAt A F A V