Metamath Proof Explorer


Theorem dfinito3

Description: An alternate definition of df-inito depending on df-termo , without dummy variables. (Contributed by Zhi Wang, 29-Aug-2024)

Ref Expression
Assertion dfinito3 InitO=TermOoppCatCat

Proof

Step Hyp Ref Expression
1 fvres cCatoppCatCatc=oppCatc
2 1 fveq2d cCatTermOoppCatCatc=TermOoppCatc
3 2 mpteq2ia cCatTermOoppCatCatc=cCatTermOoppCatc
4 termofn TermOFnCat
5 dffn2 TermOFnCatTermO:CatV
6 4 5 mpbi TermO:CatV
7 oppccatf oppCatCat:CatCat
8 fcompt TermO:CatVoppCatCat:CatCatTermOoppCatCat=cCatTermOoppCatCatc
9 6 7 8 mp2an TermOoppCatCat=cCatTermOoppCatCatc
10 dfinito2 InitO=cCatTermOoppCatc
11 3 9 10 3eqtr4ri InitO=TermOoppCatCat