Metamath Proof Explorer


Theorem dfinito3

Description: An alternate definition of df-inito depending on df-termo , without dummy variables. (Contributed by Zhi Wang, 29-Aug-2024)

Ref Expression
Assertion dfinito3 InitO = TermO oppCat Cat

Proof

Step Hyp Ref Expression
1 fvres c Cat oppCat Cat c = oppCat c
2 1 fveq2d c Cat TermO oppCat Cat c = TermO oppCat c
3 2 mpteq2ia c Cat TermO oppCat Cat c = c Cat TermO oppCat c
4 termofn TermO Fn Cat
5 dffn2 TermO Fn Cat TermO : Cat V
6 4 5 mpbi TermO : Cat V
7 oppccatf oppCat Cat : Cat Cat
8 fcompt TermO : Cat V oppCat Cat : Cat Cat TermO oppCat Cat = c Cat TermO oppCat Cat c
9 6 7 8 mp2an TermO oppCat Cat = c Cat TermO oppCat Cat c
10 dfinito2 InitO = c Cat TermO oppCat c
11 3 9 10 3eqtr4ri InitO = TermO oppCat Cat