Metamath Proof Explorer


Theorem dia1elN

Description: The largest subspace in the range of partial isomorphism A. (Contributed by NM, 5-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses dia1.h H=LHypK
dia1.t T=LTrnKW
dia1.i I=DIsoAKW
Assertion dia1elN KHLWHTranI

Proof

Step Hyp Ref Expression
1 dia1.h H=LHypK
2 dia1.t T=LTrnKW
3 dia1.i I=DIsoAKW
4 1 2 3 dia1N KHLWHIW=T
5 1 3 diaf11N KHLWHI:domI1-1 ontoranI
6 f1ofun I:domI1-1 ontoranIFunI
7 5 6 syl KHLWHFunI
8 1 3 dia1eldmN KHLWHWdomI
9 fvelrn FunIWdomIIWranI
10 7 8 9 syl2anc KHLWHIWranI
11 4 10 eqeltrrd KHLWHTranI