Metamath Proof Explorer


Theorem diaf1oN

Description: The partial isomorphism A for a lattice K is a one-to-one, onto function. Part of Lemma M of Crawley p. 121 line 12, with closed subspaces rather than subspaces. See diadm for the domain. (Contributed by NM, 17-Jan-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dvadia.h H=LHypK
dvadia.u U=DVecAKW
dvadia.i I=DIsoAKW
dvadia.n ˙=ocAKW
dvadia.s S=LSubSpU
Assertion diaf1oN KHLWHI:domI1-1 ontoxS|˙˙x=x

Proof

Step Hyp Ref Expression
1 dvadia.h H=LHypK
2 dvadia.u U=DVecAKW
3 dvadia.i I=DIsoAKW
4 dvadia.n ˙=ocAKW
5 dvadia.s S=LSubSpU
6 1 3 diaf11N KHLWHI:domI1-1 ontoranI
7 f1of1 I:domI1-1 ontoranII:domI1-1ranI
8 6 7 syl KHLWHI:domI1-1ranI
9 1 2 3 4 5 diarnN KHLWHranI=xS|˙˙x=x
10 f1eq3 ranI=xS|˙˙x=xI:domI1-1ranII:domI1-1xS|˙˙x=x
11 9 10 syl KHLWHI:domI1-1ranII:domI1-1xS|˙˙x=x
12 8 11 mpbid KHLWHI:domI1-1xS|˙˙x=x
13 dff1o5 I:domI1-1 ontoxS|˙˙x=xI:domI1-1xS|˙˙x=xranI=xS|˙˙x=x
14 12 9 13 sylanbrc KHLWHI:domI1-1 ontoxS|˙˙x=x