Metamath Proof Explorer


Theorem diaf1oN

Description: The partial isomorphism A for a lattice K is a one-to-one, onto function. Part of Lemma M of Crawley p. 121 line 12, with closed subspaces rather than subspaces. See diadm for the domain. (Contributed by NM, 17-Jan-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dvadia.h H = LHyp K
dvadia.u U = DVecA K W
dvadia.i I = DIsoA K W
dvadia.n ˙ = ocA K W
dvadia.s S = LSubSp U
Assertion diaf1oN K HL W H I : dom I 1-1 onto x S | ˙ ˙ x = x

Proof

Step Hyp Ref Expression
1 dvadia.h H = LHyp K
2 dvadia.u U = DVecA K W
3 dvadia.i I = DIsoA K W
4 dvadia.n ˙ = ocA K W
5 dvadia.s S = LSubSp U
6 1 3 diaf11N K HL W H I : dom I 1-1 onto ran I
7 f1of1 I : dom I 1-1 onto ran I I : dom I 1-1 ran I
8 6 7 syl K HL W H I : dom I 1-1 ran I
9 1 2 3 4 5 diarnN K HL W H ran I = x S | ˙ ˙ x = x
10 f1eq3 ran I = x S | ˙ ˙ x = x I : dom I 1-1 ran I I : dom I 1-1 x S | ˙ ˙ x = x
11 9 10 syl K HL W H I : dom I 1-1 ran I I : dom I 1-1 x S | ˙ ˙ x = x
12 8 11 mpbid K HL W H I : dom I 1-1 x S | ˙ ˙ x = x
13 dff1o5 I : dom I 1-1 onto x S | ˙ ˙ x = x I : dom I 1-1 x S | ˙ ˙ x = x ran I = x S | ˙ ˙ x = x
14 12 9 13 sylanbrc K HL W H I : dom I 1-1 onto x S | ˙ ˙ x = x