Metamath Proof Explorer


Theorem dicvalrelN

Description: The value of partial isomorphism C is a relation. (Contributed by NM, 8-Mar-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dicvalrel.h H=LHypK
dicvalrel.i I=DIsoCKW
Assertion dicvalrelN KVWHRelIX

Proof

Step Hyp Ref Expression
1 dicvalrel.h H=LHypK
2 dicvalrel.i I=DIsoCKW
3 relopabv Relfs|f=sιgLTrnKW|gocKW=XsTEndoKW
4 eqid K=K
5 eqid AtomsK=AtomsK
6 4 5 1 2 dicdmN KVWHdomI=pAtomsK|¬pKW
7 6 eleq2d KVWHXdomIXpAtomsK|¬pKW
8 breq1 p=XpKWXKW
9 8 notbid p=X¬pKW¬XKW
10 9 elrab XpAtomsK|¬pKWXAtomsK¬XKW
11 7 10 bitrdi KVWHXdomIXAtomsK¬XKW
12 11 biimpa KVWHXdomIXAtomsK¬XKW
13 eqid ocKW=ocKW
14 eqid LTrnKW=LTrnKW
15 eqid TEndoKW=TEndoKW
16 4 5 1 13 14 15 2 dicval KVWHXAtomsK¬XKWIX=fs|f=sιgLTrnKW|gocKW=XsTEndoKW
17 12 16 syldan KVWHXdomIIX=fs|f=sιgLTrnKW|gocKW=XsTEndoKW
18 17 releqd KVWHXdomIRelIXRelfs|f=sιgLTrnKW|gocKW=XsTEndoKW
19 3 18 mpbiri KVWHXdomIRelIX
20 19 ex KVWHXdomIRelIX
21 rel0 Rel
22 ndmfv ¬XdomIIX=
23 22 releqd ¬XdomIRelIXRel
24 21 23 mpbiri ¬XdomIRelIX
25 20 24 pm2.61d1 KVWHRelIX