Description: The difference of a closed set with an open set is open. (Contributed by Mario Carneiro, 6-Jan-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | iscld.1 | |
|
Assertion | difopn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscld.1 | |
|
2 | elssuni | |
|
3 | 2 1 | sseqtrrdi | |
4 | 3 | adantr | |
5 | df-ss | |
|
6 | 4 5 | sylib | |
7 | 6 | difeq1d | |
8 | indif2 | |
|
9 | cldrcl | |
|
10 | 9 | adantl | |
11 | simpl | |
|
12 | 1 | cldopn | |
13 | 12 | adantl | |
14 | inopn | |
|
15 | 10 11 13 14 | syl3anc | |
16 | 8 15 | eqeltrrid | |
17 | 7 16 | eqeltrrd | |