Metamath Proof Explorer


Theorem difopn

Description: The difference of a closed set with an open set is open. (Contributed by Mario Carneiro, 6-Jan-2014)

Ref Expression
Hypothesis iscld.1 X=J
Assertion difopn AJBClsdJABJ

Proof

Step Hyp Ref Expression
1 iscld.1 X=J
2 elssuni AJAJ
3 2 1 sseqtrrdi AJAX
4 3 adantr AJBClsdJAX
5 df-ss AXAX=A
6 4 5 sylib AJBClsdJAX=A
7 6 difeq1d AJBClsdJAXB=AB
8 indif2 AXB=AXB
9 cldrcl BClsdJJTop
10 9 adantl AJBClsdJJTop
11 simpl AJBClsdJAJ
12 1 cldopn BClsdJXBJ
13 12 adantl AJBClsdJXBJ
14 inopn JTopAJXBJAXBJ
15 10 11 13 14 syl3anc AJBClsdJAXBJ
16 8 15 eqeltrrid AJBClsdJAXBJ
17 7 16 eqeltrrd AJBClsdJABJ