Metamath Proof Explorer


Theorem difunieq

Description: The difference of unions is a subset of the union of the difference. (Contributed by ML, 29-Mar-2021)

Ref Expression
Assertion difunieq ABAB

Proof

Step Hyp Ref Expression
1 eluni xAyxyyA
2 eluni xByxyyB
3 2 notbii ¬xB¬yxyyB
4 alinexa yxy¬yB¬yxyyB
5 nfa1 yyxy¬yB
6 sp yxy¬yBxy¬yB
7 6 adantrd yxy¬yBxyyA¬yB
8 7 ancld yxy¬yBxyyAxyyA¬yB
9 anass xyyA¬yBxyyA¬yB
10 8 9 imbitrdi yxy¬yBxyyAxyyA¬yB
11 5 10 eximd yxy¬yByxyyAyxyyA¬yB
12 4 11 sylbir ¬yxyyByxyyAyxyyA¬yB
13 12 impcom yxyyA¬yxyyByxyyA¬yB
14 1 3 13 syl2anb xA¬xByxyyA¬yB
15 eldif xABxA¬xB
16 eluni xAByxyyAB
17 eldif yAByA¬yB
18 17 anbi2i xyyABxyyA¬yB
19 18 exbii yxyyAByxyyA¬yB
20 16 19 bitri xAByxyyA¬yB
21 14 15 20 3imtr4i xABxAB
22 21 ssriv ABAB