Metamath Proof Explorer


Theorem dih0rn

Description: The zero subspace belongs to the range of isomorphism H. (Contributed by NM, 27-Apr-2014)

Ref Expression
Hypotheses dih0rn.h H=LHypK
dih0rn.i I=DIsoHKW
dih0rn.u U=DVecHKW
dih0rn.o 0˙=0U
Assertion dih0rn KHLWH0˙ranI

Proof

Step Hyp Ref Expression
1 dih0rn.h H=LHypK
2 dih0rn.i I=DIsoHKW
3 dih0rn.u U=DVecHKW
4 dih0rn.o 0˙=0U
5 eqid 0.K=0.K
6 5 1 2 3 4 dih0 KHLWHI0.K=0˙
7 eqid BaseK=BaseK
8 7 1 2 dihfn KHLWHIFnBaseK
9 hlop KHLKOP
10 9 adantr KHLWHKOP
11 7 5 op0cl KOP0.KBaseK
12 10 11 syl KHLWH0.KBaseK
13 fnfvelrn IFnBaseK0.KBaseKI0.KranI
14 8 12 13 syl2anc KHLWHI0.KranI
15 6 14 eqeltrrd KHLWH0˙ranI